

AFRL-IF-RS-TR-2007-113
Final Technical Report
April 2007

A MODEL OF TRUST FOR DEVELOPING
TRUSTWORTHY SYSTEMS FROM
UNTRUSTWORTHY ACTORS

Colorado State University

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Rome
Research Site Public Affairs Office and is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information
Center (DTIC) (http://www.dtic.mil).

AFRL-IF-RS-TR-2007-113 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

ROBERT VAETH WARREN H. DEBANY, Jr.
Work Unit Manager Technical Advisor, Information Grid Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APR 2007
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

May 03 – Nov 06
5a. CONTRACT NUMBER

5b. GRANT NUMBER
F30602-03-1-0101

4. TITLE AND SUBTITLE

A MODEL OF TRUST FOR DEVELOPING TRUSTWORTHY SYSTEMS
FROM UNTRUSTWORTHY ACTORS

5c. PROGRAM ELEMENT NUMBER
62702F

5d. PROJECT NUMBER
FAA6

5e. TASK NUMBER
2N

6. AUTHOR(S)

Indrajit Ray and Indrakshi Ray

5f. WORK UNIT NUMBER
PR

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Colorado State University
601 S Howes St.
Fort Collins, CO 80523-2002

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFGB
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2007-113

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 07-199

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The objective of this effort is to develop a new model of trust that allowed one to reason about trust relationships in information
systems with special emphasis on trust as it related to integrity and availability. The project has produced the following results. 1. It
has proposed a formal model to assess multiple levels of trust that is more inclusive than the current binary models. A major strength
of the model is that it is more in keeping with the social models of trust used by policy makers. 2. It has defined a notion of degrees
of trust and proposed expressions and procedures to evaluate and establish the degree of trust of different systems. 3. It has defined
procedures to compare information at different degrees of trust. 4. It has developed procedures to determine the trust level of
composed information. 5. It has formulated processes and procedures to manage trust relationships.

15. SUBJECT TERMS
Trust model, trust relationships, information systems, integrity, availability, formal model

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Robert Vaeth

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

91
19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

Contents

1 Introduction..3

2 The Vector Model of Trust..7
2.1 Overview7
2.2 Model Description .. . 8

2.2.1 Trust evaluation .. 10
2.2.2 Evaluating experience .. . 13
2.2.3 Evaluating knowledge .. 15
2.2.4 Evaluating recommendation 16
2.2.5 Normalizing the trust vector18
2.2.6 Value of the normalized trust vector 19
2.2.7 Trust dynamics .20
2.2.8 Trust vector at present time 21

2.3 Comparison Operation on Trust Vectors 22
2.4 Combining Trust Relationships 23

2.4.1 Trust relationship between a truster and a group of trustees 24
2.4.2 Trust relationship between a group of trusters and a single trustee 25
2.4.3 Trust relationship between a group of trusters and a group of trustees . . . 27
2.4.4 Reconfiguration of a group .. . 27

3 The VTrust Trust Management System 30
3.1 The VTrust System Architecture 30
3.2 Conceptual Trust Model 33

3.2.1 Inter-relationship of relational entities 33
3.2.2 The VTrust database structure 35

3
 i

keyter
Text Box

4 TrustQL: The VTrust Query Language 40
4.1 TrustQL Keywords .. 42
4.2 Trust Definition Language 55

4.2.1 Specifying entity .. 55
4.2.2 Specifying context57
4.2.3 Specifying experience57
4.2.4 Specifying knowledge58
4.2.5 Specifying recommendation59
4.2.6 Specifying trust dynamics 60
4.2.7 Specifying trust evaluation policy 62
4.2.8 Specifying trustee group policy 63
4.2.9 Specifying truster group policy 64
4.2.10 Specifying group reconfiguration 65

4.3 Trust Manipulation Language 66
4.3.1 INSERT trust value .66
4.3.2 UPDATE trust value .66
4.3.3 DELETE trust value .67
4.3.4 SELECT trust value68

5 Model Application 72
5.1 TrustBAC model .73
5.2 Access Control Using TrustBAC 78

6 Conclusions and Future Work 80

4

ii

keyter
Text Box

List of Figures

1.1 Mutual assessment of trustworthiness in a collaborative system 7

2.1 Graph Showing the Nature of Trust Dynamics 23

3.1 Trust Management System Architecture 34
3.2 ER-diagram of the VTrust system 37

5.1 TrustBAC model .77

5

iii

keyter
Text Box

Executive Summary

The notion oftrust is widely used in secure information systems. For example, “trusted computing
base” refers to the hardware and software that make up the security of a system; a “trusted system”
is one that is believed to be secure against relevant attacks, and so on. However, until recently,
there were no accepted formalism or techniques for the specification of trust and for reasoning
about it. Secure systems had been built under the premise that concepts like “trusted” or “trust-
worthiness” were well understood, unfortunately without even agreeing on what “trust” means,
how to measure it, how to compare two trust values and how to compose the same. There was a
lack of a comprehensive mathematical framework for quantifying the amount of trust that can be
placed on complex systems that had been built from smaller components. This led to considerable
degrees of inferential ambiguities when security related decisions had to be made based on trust.
Additionally, most researchers had addressed trust related issues from the perspective of access
control in the confidentiality context.

The objective of this effort was to develop a new model of trust that allowed one to reason about
trust relationships in information systems with special emphasis on trust as it related to integrity
and availability. The project has produced the following results.

1. It has proposed a formal model to assess multiple levels oftrust that is more inclusive than
the current binary models. A major strength of the model is that it is more in keeping with
the social models of trust used by policy makers.

2. It has defined a notion of degrees of trust and proposed expressions and procedures to eval-
uate and establish the degree of trust of different systems.

3. It has defined procedures to compare information at different degrees of trust.

4. It has developed procedures to determine the trust level of composed information.

5. It has formulated processes and procedures to manage trust relationships.

1

Various aspects of the model were subjected to peer-review.A number of technical papers in
reputable international conferences have resulted in the process. A technical paper that details the
complete model is currently being reviewed by the editorialboard of a top-level journal.

The project investigated the challenges of access control in open and distributed environments
in an attempt to determine how this area can benefit from the new trust model. An example of such
an environment is the NAS system of the FAA. Preliminary results from the investigation shows
promise. Results have been published in major conferences.Further investigation is being done.

The project team has identified a number of open issues that, if addressed, will enhance the
expressive power of the model and make it more usable. Among these are (i) the proper formulation
of trust context, (ii) the ability to extrapolate trust relationships and (iii) the definition of and
reasoning with trust chains. We are looking forward to continued support from the AFRL and the
FAA for this purpose.

2

Chapter 1

Introduction

Information technology is increasingly driven by the requirements of confidentiality, integrity,
availability, usability and digital rights management of systems and information resources. To
ensure that information systems behave according to statedrequirements, proper techniques and
procedures need to be used in designing and implementing thesystem. A lot of research has been
done in developing such techniques and in evaluating the degree to which the system will behave
in isolation according to these stated requirements. However, a systems behavior is frequently
dependent on other systems. To measure the confidence that users have in their decision to accept
the assumed or measured amount of proper behavior of the system in the face of influence from
other systems, the notion oftrust is widely used. However, there are no accepted formalisms or
techniques for the specification and measurement of trust and for reasoning about trust. For the
most part, trust is considered to be a binary entity; confidence is measured in terms of either total
trust or no trust.

This binary model of trust differs considerably in semantics from the social models of trust used
by policy makers. In sociology, trust means the assured reliance on the character, ability, strength
or truth of someone or something. This assurance level can beof different degrees, leading to
entities being labeled trusted to various levels. Within the domain of computer security, however,
the termtrustedis used strictly to indicate the successful evaluation of authorization requirements
for security-critical actions. This creates inferential ambiguities, for example in the composition of
information gathered from different sources or in the composition of systems that involve interac-
tion between human and computational devices. As systems evolve, a significant chasm emerges
between our sociological perception of trust or trustworthiness and information technology’s view
of trust.

Consider a collaborative network defense system deployed within a local area network (LAN)

6
3

keyter
Text Box

NID NID
1

NID

2

local

Signals and signs
for establishing trust

relationships

Figure 1.1: Mutual assessment of trustworthiness in a collaborative system

as shown in figure1.1. A major component of the system is a distributed network intrusion de-
tection (NID) module that can gather information from othernetwork intrusion detection systems
deployed elsewhere on LANs that are under separate administrative controls. The NID module
monitors the local network for possible intrusion scenarios and also seeks information about in-
trusion alerts from some of the other similar modules deployed in other LANs. The module then
analyzes the information and advises the local LAN administrator about the possibility of a net-
work attack in the near future. The NIDs modules belonging toother LANs behave in a similar
manner. Now the local NID (call it NIDlocal) can trust the information that it gathers from the local
LAN. However, it may be too naïve for the local NID to trust theothers completely. Here are sev-
eral situations where this will be the case. Assume that one of the remote NIDs bears a certificate
from an independent testing agency that attests to the fact that the NID application was submitted
by its developer for testing and has been found to be free of malicious code and other defects.
However, the certification agency may not have followed proper procedure in the certification pro-
cess; the certification agency’s own credentials may have been revoked but the information may
have not trickled down to the end user; or the developer may have tweaked with the software after
the certification. Under such circumstances although the certificate attests to the competence of
the system, it is not authoritative enough. We are left with no rational approach for answering the
following questions: (1) What expectations can the LAN administrator have about the usefulness
of the composed information? (2) What critical activities can the administrator use the information

7
4

keyter
Text Box

for without much problem? (3) What are the critical activities that the administrator does not want
to fulfill using this information?

These problems arise because there are two aspects to the evaluation of trustworthiness of
systems. The first aspect is determining whether a system is competent or not. The second aspect is
determining the firmness in the belief about our evaluation of the system’s competency. A number
of works have looked into the former aspect; however the latter is neglected, at least within the
computer security and dependability area. We address this second aspect in the current work.

The above observations motivate us to propose a new “Vector”model of trust. In this trust
is a measurable entity which can have different degrees. We specify trust as a vector of numeric
values. Each element of the vector influences the value of trust. We identify four such parameters
in our model. We propose methods to determine the values corresponding to these parameters.
Substituting values for each of these parameters in the trust vector provides a value for trust. This
vector now represents trust of a certain degree. To render the concept of different degrees of trust
more intuitive, we associate a numeric value in the range[−1,1] with the trust vector. The value
in the positive region of this range is used to express trust and that in the negative region is used to
express distrust. Neutrality about trust and distrust is expressed using the value zero. We also use
a special value, denoted by ‘⊥’ to represent “lack of information” about trust. We define operators
to map a trust vector to a trust value and vice versa. Next, we investigate the dynamic nature of
trust – how trust (or distrust) changes over time. We observethat trust depends on trust itself –
that is a trust relationship established at some point of time in the past influences the computation
of trust at the current time. We formalize this notion in our model. Defining comparison operator
for trust vectors, allows us to make a decision about relative “trustworthiness” of two or more
entities. Finally, we define a mechanism to combine trusts ofdifferent degrees to form a single
trust relationship. This helps us model the evolution of a trust relationship between a group of
trusters and a group of trustees.

Using our model, on the other hand, we can analyze the situation presented in figure1.1 as
follows. Since the crux of the problem lies in an ability to determine trust among the various
agents, we propose in our model an approach to determine how much trust the local NID (NIDlocal)
can have on the information collected from other NIDs (say, NID1 and NID2).

The system initiates with NIDlocal maintaining a neutral position about the trustworthiness of
NID1 and NID2. As time progress, NIDlocal will gradually begin to establish trust relationships
with the other two. The degree of trust that NIDlocal establishes with another NID will depend on
different factors. For example, NIDlocal may become aware that the other NIDs are exactly the
same applications as itself. Thisknowledgetogether with a trust policy that establishes guidelines

8
5

keyter
Text Box

on how to use the knowledge helps NIDlocal to gain some trust on the other two NIDs. Further,
over a period of time NIDlocal begins to have positiveexperienceswith NID2 and some positive
and some negative experiences with NID1. (Note that the perception of positive experience or
negative experience is quite subjective. We leave it like that because, after all, the notion of trust
is also very subjective.) At some point then the NIDlocal will (perhaps) evaluate with the help of
our model that NID1 is trusted to a degree of 0.25 and trust NID2 to degree of 0.75. The local NID
will then consult its policy base to determine how an information corresponding to this trust value
should be used.

The above approach provides a more rational way to evaluating the trustworthiness of systems.
It has got a number of advantages. The biggest is that the model allows a truster to determine a
trust level even in the face of incomplete information aboutfactors that the truster uses to judge
the trustworthiness of the trustee. In the worst case, for instance, the model will compel the truster
to take aneutralposition. The second major advantage is that the model takesinto consideration
individual perceptions about trust by way of the notion of a trust evaluation policy. A third major
advantage is that this trust model can neutralize to a great extent the scenario where a recommender
tells a lie to gain an unfair advantage without using complexgame theoretic approaches.

The rest of the report is organized as follows. We present theVector model of trust in chapter2.
Chapter3 describes the VTrust trust management system that has been developed to store, manage
and manipulate trust relationships according to the Vectormodel. The VTrust trust management
systems uses a language called TrustQL for accessing and manipulating the stored information.
The complete syntax of the the TrustQL language is provided in chapter4. In chapter5 we discuss
how to use the model to address a very important security problem, namely access control in open
and distributed environments. Finally chapter6 concludes the report with a discussion of some
refinement and extensions of the model that we plan to addressin the future.

9
6

keyter
Text Box

Chapter 2

The Vector Model of Trust

2.1 Overview

Trust is modeled as a measurable entity that can have different degrees. We specify trust as a
vector of numeric values. Each element of the vector influences the value of trust. We identify
three such parameters in our model. We propose methods to determine the values corresponding
to these parameters. Substituting values for each of these parameters in the trust vector provides
a value for trust. This vector now represents trust of a certain degree. To render the concept of
different degrees of trust more intuitive, we associate a numeric value in the range[−1,1] with the
trust vector. The value in the positive region of this range is used to express trust and that in the
negative region is used to express distrust. Neutrality about trust and distrust is expressed using
the value zero. We also use a special value, denoted by ‘⊥’ to represent “lack of information”
about trust. We define operators to map a trust vector to a trust value and vice versa. Next, we
investigate the dynamic nature of trust – how trust (or distrust) changes over time. We observe
that trust depends on trust itself – that is a trust relationship established at some point of time in
the past influences the computation of trust at the current time. We formalize this notion in our
model. Defining comparison operator for trust vectors, allows us to make a decision about relative
“trustworthiness” of two or more entities. Finally, we define a mechanism to combine trusts of
different degrees to form a single trust relationship. Thishelps us model the evolution of a trust
relationship between a group of trusters and a group of trustees.

The proposed model helps a user evaluate the amount of confidence she/he has in her/his de-
cision to accept the assumed or measured amount of competency of a particular system when the
system’s behavior is influenced by other systems (includinghuman beings). This allows the user to
evaluate the risks involved in using the system in a better manner and thus design more trustworthy

10
7

keyter
Text Box

systems. This is illustrated in the following discussion.
Consider the example of the network intrusion detection systems. To answer the questions

posed earlier, we need to determine how much trust the local NID (NID local) can have on the
information collected from other NIDs (say, NID1 and NID2). In our model, the system initiates
with NID local maintaining a neutral position about trustworthiness of NID1 and NID2. As time
progress, NIDlocal will gradually begin to establish trust relationships withthe other two. The
degree of trust that NIDlocal establishes with another NID will depend on different factors. For
example, NIDlocal may become aware that the other NIDs are exactly the same applications as
itself. NIDlocal may begin to have positive experiences with NID2 and some positive and some
negative experiences with NID1. At some point then the NIDlocal will (perhaps) evaluate based on
our model that NID1 is trusted to a degree of 0.25 and trust NID2 to degree of 0.75. Our model can
further indicate that if information from NID1 and NID2 are combined, the resulting information
can be trusted to a degree of 0.54 (say). Thus, if together NID1 and NID2 report that an attack is
imminent, the current NID assumes that this information canbe trusted to a degree of 0.54. It can
then take a more effective decision (for example for allocating resources for defending against the
attack).

2.2 Model Description

In our model we adopt the definition of trust as provided by Grandison and Sloman [5].

Definition 1 Trust is defined to be the firm belief in the competence of an entity to act dependably
and securely within a specific context.

Definition 2 Distrust is defined as the firm belief in the incompetence of anentity to act depend-
ably and securely within a specified context.

Although we define trust and distrust separately in our model, we allow the possibility of a neutral
position where there is neither trust nor distrust. As we elaborate on the model this will become
more clear.

Trust in our model is specified as a trust relationship between a truster – an entity that trusts
the target entity – and a trustee – the target entity that is trusted. The truster is always an active
entity (for example, a human being or a subject). The trusteecan either be an active entity or a
passive entity (for example, a piece of information or a software). We call an active entity anactor

and a passive entity, acomponent. We use the following notation to specify a trust relationship –
(A

c
−→ B)N

t . It specifiesA’s normalizedtrust onB at a given timet for a particular contextc. This

11
8

keyter
Text Box

relationship is obtained from the simple trust relationship – (A
c

−→ B)t – by combining the latter
with a normalizing factor. We also introduce a concept called thevalueof a trust relationship. This
is denoted by the expressionv(A

c
−→ B)N

t and is a number in[−1,1]∪{⊥} that is associated with
the normalized trust relationship. A trustee is completelytrusted (or distrusted) if the value of the
trust relationship is 1 (-1). If the value is in the range (0,1) the trustee issemi-trustworthy; if the
value is in the range (-1,0) the trustee isun-trustworthy. The 0 value represents trust neutrality that
is, the trustee is neither trustworthy nor un-trustworthy.The special symbol⊥ is used to denote
the value when there is not enough information to decide about trust, distrust, or neutrality.

Definition 3 Theatomic purposeof a trust relationship(A c
−→ B)t is one of

1. Access resourcesThe truster trusts a trustee to access and/or use in a proper manner some re-
sources that the truster controls. Examples of this are reading/writing sensitive information,
using properly copyrighted information and so on.

2. Provide servicesThe truster trusts the trustee to provide a service that doesnot involve
access to the truster’s resources. Some examples of this will be hosting web services, provide
a certification service and so on.

3. Make decisionsThe truster trusts the trustee in a decision making process.What kind
decision making processes the truster wants to trust the trustee with depends on the truster’s
policy. An example of this will be deciding if a certificate isvalid or not.

The truster may also trust the trustee for some combination of these atomic purposes. For example
the truster may trust the trustee to provide a service and make decisions.

Definition 4 Thepurposeof a trust relationship is defined as follows.
1. An atomic purpose is a purpose of a trust relationship.
2. The negation of an atomic purpose, denoted by “not” atomicpurpose, is a purpose.
3. Two purposes connected by the operator “and” form a purpose.
4. Two purposes connected by the operator “or” form a purpose.
5. Nothing else is a purpose.

Further, in our model of trust we are interested in tenaspects– availability, usability, reliability,
safety, confidentiality, integrity, maintainability, accountability, authenticity and non-repudiability
– of the trustee. Combining the concepts of trust purposes and trustee aspect, we definetrust

contextas the interrelated conditions in which trust exists or occurs. For example, let a truster,A,
trust a trustee,B’s reliability to provide a service and integrity to make a decision. The “reliability
to provide a service and integrity to make a decision” is considered to be the trust context.

12
9

keyter
Text Box

Definition 5 Let S denote the set of trust purposes andA , the set of trustee aspects identified
above. Then thecontext, c(T), of a trust relationshipT is defined as follows:

1. A tuple of the form< si,ai > is a context wheresi ∈ S andai ∈ A .
2. Two contexts connected by the operator “and” form a context.
3. Two contexts connected by the operator “or” is a context.
4. Nothing else is a context.

Definition 6 The context function c(T) of a trust relationshipT is a function that takes the trust
relationship as the input and returns the context of that trust relationship.

2.2.1 Trust evaluation

Our trust model aims to provide the notion of a trust value to represent levels of trust. We face
two choices for trust values – qualitative or quantitative.If qualitative values are used, then degree
or level of trust can be expressed in terms of a set of discretevalues such as high, medium or
low. The advantage of such a scheme is that it is quite intuitive. However, the challenges are
significant. First, it is rather difficult to define preciselythe semantics of such levels; semantics
across different systems can vary. Second, determining theappropriate number of such degrees for
a particular system is not straightforward; in fact it can tend to be rather ad hoc. Third, determining
how the degrees from different domains can be compared and combined is most difficult. Last but
not the least, a problem with such discrete degrees is that itis not easy to represent ignorance or
neutrality with respect to trust or distrust.

Quantifying trust through numeric values alleviate such problems. Moreover, mathematical
operations on degrees of trust can be defined that allow proper comparison of degrees from dif-
ferent domains and combine them. This leads us to adopt numeric values for trust levels. Instead
of limiting ourselves to a single value for trust (or distrust), we define a trust value in terms of a
vector of numeric values. We use a vector so that we can specify the effects of the many different
factors that influence trust. However, we also believe that there are times when a single numeric
value is more intuitive than a vector of values – particularly when making comparisons in an infor-
mal manner. This leads us to define the notion of a “value” for atrust vector. It is a either single
numeric value in the range[−1,1] or a special value⊥.

At this stage we point to two characteristics of trust (or distrust) that shapes our model. The first
is the dynamic nature of trust. Trust changes over time. Evenif there is no change in the underlying
factors that influence trust over a time period, the value of trust at the end of the period is not the
same as that at the beginning of the period. Irrespective of our initial trust or distrust decision,

13
10

keyter
Text Box

over a period of time we gradually become non-decisive or uncertain about the trust decision. This
leads us to claim that trust (and alternately distrust) decays over time - both tends towards a non-
decisive value over time. The second characteristic is, what is often called thepropensityto trust
[5]. Given the same set of values for the factors that influence trust, two trusters may come up
with two different trust values for the same trustee. We believe that there are two main reasons
for this. First, during evaluation of a trust value, a truster may assign different weights to different
factors that influence trust. The weights will depend on the trust evaluation policy of the truster.
If two different trusters assign two different sets of weights, then the resulting trust value will be
different. The second reason is applicable only when the truster is a human being and is completely
subjective in nature – one person may be more trusting than another. We believe that this latter
concept is extremely difficult to model in an objective manner. We choose to disregard this feature
in our model and assume that all trusters are trusting in nature to the same extent. We capture
the first factor using the concept of atrust evaluation policy vector, which is simply a vector of
weight values. Using this weight vector on the simple trust relationship provides the normalized
trust relationship.

We begin by identifying three different parameters that influence trust values –experience,

knowledge, andrecommendation.

Definition 7 Theexperienceof a truster about a trustee is defined as the measure of the cumulative
effect of a number of events that were encountered by the truster with respect to the trustee in a
particular context and over a specified period of time.

The trust value of a truster on a trustee for some context can change because of the the truster’s
experienceswith the trustee in the particular context. Consider the following scenario with our
running example. NIDlocal has been witnessing that the information feed from NID1 has been rel-
evant for the past five months. Initially NIDlocal was neutral towards NID1’s information; however
having benefited from it, NIDlocal now trusts NID1 more to provide sound intrusion alerts in a
timely manner.

A truster can categorize each experience about a trustee astrust-positive, trust-negativeor trust-

neutral experience. A trust-positive experience increases trust degree whereas a trust-negative
experience diminishes trust degree. A trust-neutral eventcontributes neither way.

Definition 8 Theknowledgeof the truster regarding a trustee for a particular context is defined as
a measure of the condition of awareness of the truster through acquaintance with, familiarity of or
understanding of a science, art or technique.

14
11

keyter
Text Box

The trust value of a truster on a trustee can change because ofsomeknowledgethat the truster
comes to posses regarding the trustee for the particular context. Knowledge can be of two types –
direct knowledgeor propertiesandindirect knowledgeor reputation.

Direct knowledge is one which the truster acquires by itself. It may be obtained by the truster
in some earlier time for some purpose or, it may be a piece of information about the trustee for
which the truster has a concrete proof to be true. Referring to our running example let NIDlocal

want to establish a trust relationship with NID1. NIDlocal begins by trying to identify what type of
software NID1 is. It determines that NID1 is the same software as itself. This piece of information
may enhance the trust of NIDlocal.

Indirect knowledge, on the other hand, is something that thetruster does not acquire by itself.
The source of indirect knowledge is thereputationof the trustee in the context. The truster may get
the idea about the reputation of trustee from various sources like reviews, journals, news bulletin,
people’s opinion etc. With this reputation, without havingspecific information about the trustee,
the truster can build an opinion about the trustee in the context. This piece of information is indirect
because the truster has no way to determine the real truth behind the information. Finally, as with
experience, we havetrust-positive, trust-negative, andtrust-neutralknowledge.

Definition 9 A recommendationabout a trustee is defined as a measure of the subjective or objec-
tive judgment of a recommender about the trustee to the truster.

The trust value of a truster on a trustee can change because ofa recommendationfor the trustee.
For example, a truster can ask someone close to him, who happens to know the trustee, about the
latter’s credibility (within the scope of the trust context). If that third person says “good words”
about the trustee, the truster tends to have faith on the trustee. It is important to note that the
importance of the judgment of the third person to the trusterdepends on how much the truster
trusts the third person’s ability to judge others. In our model we use the degree of trust between a
truster and a recommender to evaluate the recommendation for the trustee. As before we can have
a trust-positive, trust-negative, and atrust-neutralrecommendation. Finally, recommendations can
be obtained by the truster from more than one source and thesetogether will contribute to the final
trust relationship.

To compute a trust relationship we assume that each of these three factors is expressed in terms
of a numeric value in the range[−1,1] and a special value⊥. A negative value for the component
is used to indicate thetrust-negativetype for the component, whereas a positive value for the
component is used to indicate thetrust-positivetype of the component. A 0 (zero) value for the
component indicates trust neutral. To indicate a lack of value due to insufficient information for

15
12

keyter
Text Box

any component we use the special symbol⊥. If R is the set of real numbers, then (i)a· ⊥=⊥

·a =⊥, ∀ a∈ R (ii) a+ ⊥=⊥ +a = a, ∀ a∈ R (iii) ⊥ + ⊥=⊥ and⊥ · ⊥=⊥

2.2.2 Evaluating experience

We model experience in terms of the number of events encountered by a truster,A, regarding a
trustee,B in the contextc within a specified period of time[t0, tn]. We assume thatA has a record
of the events since timet0. An event can be trust-positive, trust-negative or, trust-neutral depending
whether it contributes towards a trust-positive experience, a trust-negative experience or, a trust-
neutral experience.

Let N denote the set of natural numbers. The set of time instances{t0, t1, . . . ,tn} is a totally
ordered set, ordered by the temporal relation≺, called theprecedes-in-timerelation, as follows:
∀i, j ∈ N, ti ≺ t j ⇔ i < j. We use the symbolti � t j to signify eitherti ≺ t j or ti = t j . Let ek denote
the kth event. Events happen at time instances. We define the conceptevent-occurrence-timeas
follows:

Definition 10 The event-occurrence-time, ET, is a function that takes an eventek as input and
returns the time instance,ti at which the event occurred. Formally,ET : ek → ti .

We divide the time period[t0, tn] into a setT of n intervals,[t0, t1], [t1, t2], . . . , [tn−1, tn] such that for
any interval[ti , t j], ti ≺ t j . A particular interval,[tk−1, tk], is referred to as thekth interval. We extend
the≺ relation onT and the time intervals are also totally ordered by the≺ relation as follows:
∀i, j,k, l ∈ N, [ti , t j] ≺ [tk, tl] ⇔ t j ≺ tk. The intervals are non-overlapping except at the boundary
points, that is∀i, j,k, l ∈N, [ti , t j]∩ [tk, tl] = /0. Lastly, for two consecutive intervals[ti , t j] and[t j , tk]

if ET(ek) = t j then we assumeej ∈ [ti , t j].
We introduce the concept ofexperience policyto capture this concept of non-overlapping time

intervals. It specifies the totally ordered set of non-overlapping time intervals together with a set
of non-negative weights corresponding to each element in the set of time intervals.

Let P denote the set of all trust-positive events,Q denote the set of all trust-negative events,
andN denotes all trust-neutral events (that isE = P ∪Q ∪N). We assume that within a given
interval all trust-positive events contribute equally to the formation of a trust value and all trust-
negative events also do the same. The trust-neutral events contribute nothing. We assign equal
numeric weights to all events, trust-positive or trust-negative, within the same given interval. Let
vi

k be the weight of thekth event in theith interval. We assign a weight of+1 if an event is in the
setP , −1 if the event is in the setQ , and 0 if the event is inN . Formally, ifei

k denote thekth event

16
13

keyter
Text Box

in the ith interval, then

vi
k =

+1 , if ei
k ∈ P

−1 , if ei
k ∈ Q

0 , if ei
k ∈ N

(2.1)

Definition 11 The incidents Ij , corresponding to thejth time interval is the sum of the values of
all the events, trust-positive, trust-negative, or neutral for the time interval. If no event happened
in jth time interval, thenI j =⊥. If n j is the number of events that occurred in thejth time interval,
then

I j =

⊥ , if @e∈CE such thatET(e) ∈ [t j−1, t j]

∑
n j

k=1v j
k , otherwise

(2.2)

Events far back in time does not count as strongly as very recent events for computing trust values.
We give more weight to events in recent time intervals than those in distant intervals. To accom-
modate this in our model, we assign anon-negativeweightwi to theith interval such thatwi > w j

wheneverj < i, i, j ∈ N. We then defineexperienceas follows:

Definition 12 The experienceof an entityA about another entityB for a particular contextc, is
the accumulation of all trust-positive, trust-negative, and neutral events thatA has with regards to
B over a given period of time[t0, tn], scaled to be in the range[−1,1]∪{⊥}.

Experience has a value in the range[−1,1]∪{⊥}. To ensure that the value is within this range we
restrict the weightwi for the ith interval aswi = i

S ∀i = 1,2, . . . ,n, whereS= n(n+1)
2 . Then the

experience ofA with regards toB for a particular contextc is given by

AEc
B =

∑n
i=1wiIi

∑n
i=1ni

(2.3)

If A does not have any experience withB in the jth interval, thenI j =⊥. Thus

n

∑
i=1

wi Ii =
j−1

∑
i=1

wi Ii +w j I j +
n

∑
i= j+1

wi Ii

=
j−1

∑
i=1

wi Ii+ ⊥ +
n

∑
i= j+1

wi Ii (by property (i) of⊥)

=
j−1

∑
i=1

wi Ii +
n

∑
i= j+1

wi Ii (by property (ii) of⊥) (2.4)

If there is a situation where nothing happened between the trusterA and the trusteeB over the entire

17
14

keyter
Text Box

time period[t0, tn], thenIi =⊥ ∀ i = 1,2, . . . ,n. As a result, we havewi Ii =⊥ ∀ i = 1,2, . . . ,n which
impliesAEc

B =⊥. The above is different from the situation whenAEc
B = 0. Because, if the number of

positive events is equal to number of negative events in eachinterval, thenIi = 0, ∀ i = 1,2, . . . ,n

and as a result we getAEc
B = 0. But the former case occurs only when there is no interaction

between the truster and the trustee over the entire time period.
To illustrate our concept of experience we use the followingexample. We use the symbol “+”

to denote positive events and the symbol “-” to denote negative events.

Example 1
Let us assume that NIDlocal from our example of co-operating network intrusion detection system,
monitor the following events related to NID1 over the time period t0 – t7.

Time
+ + + − − + − + − − + + + − − − + − + + + − − − + + + −

t0 t1 t2 t3 t4 t5 t6 t7

To compute NIDlocal’s experience for NID1, we divide the time period into the intervals –
[t0,t1], . . . [t6,t7]. Applying our theory, we have the following incidents: I0 for interval [t0,t1] = +2,
I1 = 0, I2 = 0, I3 = -2, I4 = +2, I5 = -2 and I6 = +2. The weights assigned to each time interval
are as follows – w0 (for interval [t0,t1]) = 0.04, w1 = 0.07, w2 = 0.11, w3 = 0.14, w4 = 0.18, w5 =

0.21 and w6 = 0.25 (for interval [t6,t7]. Thus, the value for NIDlocal’s experience regarding NID1,
over the period [t0,t7] is 0.00857.

Example 2
Consider the second set of events that NIDlocal monitors over the same time period t0 – t7 for NID2.

Time
+ + + − − + − + − − + + + − − − + − + + + + + − + − − −

t0 t1 t2 t3 t4 t5 t6 t7

The difference between this set of events and the one in example 1 is that we have more negative
events that have happened recently. The total number of trust-positive and trust-negative events are
the same in both. We get a value of 0.00286 for experience withthis set of events.

2.2.3 Evaluating knowledge

The parameter “knowledge” is more difficult to compute and is, to some extent, subjective. To be-
gin with, each truster must define its own criteria for gradation of knowledge regarding a particular
entity. To assign a value to theknowledgecomponent, the truster must come up with two values
between -1 and +1 for direct knowledged as well as indirect knowledge or reputationr . How
the values are assigned, depends on the scheme and policy of the truster. Also the truster solely

18
15

keyter
Text Box

is responsible for assigning the relative weightswd,wr for these two types of knowledge, where
wd,wr ∈ [0,1] andwd +wr = 1.

It is possible that the truster has insufficient informationto assign a value ofd or r . For these
types of cases, we assign⊥ to those components. If the truster has some numeric value for direct
knowledged, but a ‘⊥’ for reputationr , thenA evaluatesAKc

B on the basis of direct knowledge
only. He applies the same scheme for the other situation. IfA does not get any information for
both d and r , thenAKc

B =⊥. If d, r ∈ [−1,1]∪{⊥} andwd + wr = 1 (d and r being the values
corresponding to direct and indirect knowledge respectively), then

AKc
B =

d, if r =⊥

r, if d =⊥

wd ·d+wr · r, if d 6=⊥, r 6=⊥

⊥, if d = r =⊥

(2.5)

The weightswd,wr ∈ [0,1] are determined by the underlying policy. The value⊥ is different from
zero. Value 0 implies that after evaluating the informationaccording to its trust policy, the truster’s
decision is neutral. But the value ‘⊥’ implies “lack of information”, that is there is not enough
data to determine the value of the component. The weightswd andwr are specified in terms of a
knowledge policy.

Example 3
Assume that NIDlocal determines that NID1 is the same application as itself but running on a
different platform. NIDlocal assigns a value of 0.4 for this direct knowledge. It then comes across a
piece of information that NID1’s administrator is extremely diligent. By evaluating thereputation

of NID1’s administrator regarding administration of intrusion detection systems NIDlocal assigns
a value 0.65 to reputation. Now NIDlocal’s trust policy guides it to put 70% weight on direct
knowledge and 30% weight on reputation. Then, NIDlocal calculates the knowledge component of
(NIDlocal

IA
−→ NID1)t as,NIDlocalK

IA
NID1

= 0.7×0.4+0.3×0.65 = 0.475. By IA we denote the
context of correct intrusion alerts.

2.2.4 Evaluating recommendation

An initial recommendation score,VR, is a value in the range[−1,1] that is provided to the truster
by the recommender. To assist the recommender in generatingthis score, the truster provides a
questionnaire to the recommender. The recommender uses thepositive values to express his faith
in the trustee while uses negative values to express his discontent. If the recommender has no

19
16

keyter
Text Box

conclusive decision, he uses zero as recommendation. It is quite possible that the recommender
does not return a recommendation sore. In such a caseA assigns the value⊥ to VR.

Now a trusterA, will, most likely, have a trust relationship with the recommenderψ. The
context of this trust relationship will be to act “reliably to provide a service (recommendation, in
this case)”. This trust relationship will affect the score of the recommendation provided by the
recommender. For example, let us say thatA trustsψ to a great extent to provide an appropriate
recommendation forB but does not trustψ′ as much asψ. ψ provides a recommendation score
of -0.5 to A and ψ′ also provides the same recommendation score. ToA, ψ’s -0.5 score will
have more weight for computing the trust value onB thanψ′s, althoughA will consider both the
scores. Scaling the recommendation score based on the trustrelationship between the truster and
the recommender has one important benefit. Suppose that the recommender tells a lie about the
trustee in the recommendation in order to gain an advantage with the truster. If the truster does not
trust the recommender to a great degree then the score of thisrecommendation will be low with the
truster. Note also that if the truster distrusts a recommender to properly provide a recommendation,
it won’t ask for the recommendation to begin with.

We use the trust of the truster on the recommender as a weight to the initial recommendation
score returned by the recommender. We had introduced the expressionv(A

c
−→ B)N

t earlier to
denote thevalueof a normalized trust relationship. This is a value in the range [−1,1]∪{⊥}. We
use this value as the weight. At this stage we do not specify how we generate this value. We leave
that to a later section. Following the above discussion, therecommendationψRc

B of a recommender
ψ for an entityB to the trusterA in a contextc is given byψRc

B = (v(A
rec
−→ ψ)N

t) ·VR. In addition,
the trusterA may get recommendations about the trusteeB from many different recommenders. A
recommendation policyspecifies all recommenders and their non-negative weight for a particular
trustee. Thus the recommendation value that the truster uses to compute the trust in the trustee is
specified as the weighted sum of all recommendation scores scaled to the range[−1,1]∪{⊥}. If
Ψ is a group ofn recommenders then

ΨRc
B =

{

∑n
j=1(v(A

rec
−→ j)N

t)·Vj

∑n
j=1(v(A

rec
−→ j)N

t)
(2.6)

ΨRc
B =⊥ is different fromΨRc

B = 0. In the former case, nobody responded and in the latter case
all recommenders returned a score ‘0’, that is all of them areneutral about the trustee in the trust
context.
Example 4
We continue with our example of NIDlocal trying to establish a trust relationship with other NIDs.
Let NIDlocal now ask another NID3 with whom it already has an established trust relationship

20
17

keyter
Text Box

to recommend NID1 in the context of IA. Let NIDlocal trust NID3 in the context of “giving rec-
ommendation” with 0.8. The recommender NID3 returns a value (recommendation score) 0.55
for NID1. Then NIDlocal evaluates the recommendation component of(NIDlocal

IA
−→ NID1)t as

NID3R
IA
NID1

= 0.8×0.55 = 0.44.
Next, we consider the case where 4 other NIDs, namely NID2, NID3, NID4, and NID5 give

recommendation about NID1 in the context IA and their recommendation scores are -0.7, 0.3, 0.8,
0.6 respectively. (NID2 is NID1’s competitor; so gives a negative recommendation for NID1). Let
NID local trust NID2, NID3 and NID4 with a degrees 0.4, 0.2, 0.75 and 0.5 respectively, in the con-
text of “giving recommendation”. (We assume for the time being that these values have been de-
rived somehow from the corresponding trust relationships.) Let Ψ = {NID 2, NID3, NID4, NID5}.
Then the recommendation is calculated asΨRIA

NID1
= 0.4×(−0.7)+0.2×0.3+0.75×0.8+0.5×0.6

0.4+0.2+0.75+0.5 = 0.368.
Note that NID2’s bias has been offset to a great extent.

2.2.5 Normalizing the trust vector

We mentioned earlier in section2.2.1that a truster may give more weight to one of the parameters
than others in computing a trust relationship. For example,a trusterA may choose to empha-
size experience and knowledge more than recommendation. Insuch case the truster will want to
consider the recommendation factor to a lesser extent than experience and knowledge about the
trustee. Which particular component needs to be emphasizedmore than the others, is a matter
of trust evaluation policy of the truster. The truster’s policy can be trustee specific or can be the
same for all trustees. Similarly it can be context specific orcontext independent. The policy is
represented by the truster as anormalization policyvector.

Definition 13 The normalization policy vectorAWc
B of a trusterA with regards to trusteeB in

contextc is a vector that has the same dimension as the simple-trust vector. The elements are real
numbers in the range[0,1] and the sum of all elements is equal to 1.

If the truster has the same normalization policy for all trustees but different for different contexts
then we will use the symbolAWc; for same normalization policy for all context but different
trustees we will use the symbolAWB; finally for same normalization policy for all trustees and for
all contexts we will use the symbolAW. Using this normalization policy vector the normalized trust
relationship between a trusterA and a trusteeB at a timet and for a particular contextc is given
by (A

c
−→ B)N

t = AWc
B� (A

c
−→ B)t . The� operator represents the normalization operator. Let

(A
c

−→ B)t = [AEc
B,AKc

B,ψ Rc
B] be a trust vector such thatAEc

B,AKc
B,ψ Rc

B ∈ [−1,1]∪{⊥}. Let also

AWc
B = [WE,WK ,WR] be the corresponding trust evaluation policy vector elements such thatWE +

21
18

keyter
Text Box

WK +WR = 1 andWE,WK ,WR ∈ [0,1]. The� operator generates the normalized trust relationship
as: (A

c
−→ B)N

t = AWc
B � (A

c
−→ B)t = [WE,WK ,WR]� [AEc

B,AKc
B,ψ Rc

B] = [WE · AEc
B,WK ·

AEc
B,WR ·ψRc

B] = [ˆAEc
B, ˆAKc

B, ˆψRc
B]. It follows from above that each element̂AEc

B, ˆAKc
B, ˆψRc

B of the
normalized trust vector also lies within[−1,1]∪{⊥}.

Example 5
Continuing with the example, the simple trust relationshipbetween NIDlocal and NID1 at time

t is specified as,(NIDlocal
IA
−→ NID1)t = [0.00857,0.475,0.368]. NIDlocal decides to put 60%

weight on experience, 30% on knowledge and rest 10% on recommendation. Then NIDlocal’s
trust evaluation policy vector is,NIDlocalW = [0.6,0.3,0.1]. Hence the normalized trust vector
(NIDlocal

IA
−→ NID1)

N
t is [0.6,0.3,0.1]� [0.00857,0.475,0.368] = [0.005142,0.1425,0.0368].

The normalization policy together with the experience policy and the knowledge policy form
thetrust evaluation policyof the truster.

2.2.6 Value of the normalized trust vector

So far we have defined a trust relationship in terms of a vectorwhich isnormalizedby a trust policy.
Recall from section2.2.4that there is at least one scenario in which we need to use a trust value as
a weight for a real number, namely for computing recommendations. Thus it seems appropriate to
define the concept of avaluecorresponding to the normalized trust vector.

Definition 14 Thevalueof a normalized trust relationship(A c
−→B)N

t = [ˆAEc
B, ˆAKc

B, ˆψRc
B] is a num-

ber in the range[−1,1]∪{⊥} and is defined asv(A
c

−→ B)N
t = ˆAEc

B + ˆAKc
B + ˆψRc

B.

The value for a trust relationship allows us to revise the terms “trust” and “distrust” as follows:
1. If the value,T, of a normalized trust relationship is such that 0< T ≤ 1 then it is trust. 2. If
the value,T, of a normalized trust relationship is such that−1≤ T < 0 then it is distrust. 3. If the
value,T, is 0 then it is neither trust nor distrust. 4. If the value,T, is⊥ then it isundefined.

Example 6
With our running example, the value of the normalized trust between NIDlocal and NID1 in the

context IA at timet is given as,v(NIDlocal
IA
−→ NID1)

N
t = 0.005142+0.1425+0.0368= 0.1844.

Since the value lies within the range(0,1], the “level of trust” ofNIDlocal with NID1 in the context
IA at time t is 0.1844.

22
19

keyter
Text Box

2.2.7 Trust dynamics

Trust (and distrust) changes over time. Let us assume that wehave initially computed a trust rela-
tionship~Tti at timeti , based on the values of the underlying parameters at that time. Suppose now
that we try to recompute the trust relationship~Ttn at timetn. We claim that even if the underlying
parameters do not change between timesti and tn, the trust relationship will change. To model
trust dynamics(the change of trust over time) we borrow from observations in the social sciences
that indicate that human abilities and skills respond positively to practice, in a learning-by-doing
manner, and negatively to non-practice [6]. We observe that the general tendency is to forget about
past happenings. This leads us to argue that trust (and distrust) tends towards neutrality as time
increases. Initially, the value does not change much; aftera certain period the change is more rapid;
finally the change becomes more stable as the value approaches the neutral (value = 0) level. We
assert that limt→∞ v(~Tt) = 0. Thus trust dynamics can be represented by the graph shown in figure
2.1. How fast trust (or distrust) will decay over time, is, we propose, dependent on the truster’s

0

tru
st

di
st

ru
st

Time

v(~Tt)

Figure 2.1: Graph Showing the Nature of Trust Dynamics

policy. The truster may choose to forget about trust relationships which are 3 years old or 5 years
old. The model cannot dictate this. Our goal is to provide a basis by which the truster can at least
estimate, based on the truster’s individual perception about this, the trust at timetn. We further
believe that trust relationship at present time is not only dependent on the values of the underlying
parameters, but also on the “decayed” value of the previous trust. We discuss this in more details
in the next section.

Let v(~Tti), be the value of a trust relationship,~Tti , at timeti andv(~Ttn) be the decayed value of
the same at timetn. Then thetime-dependent valueof ~Tti is defined as follows:

Definition 15 Thetime-dependent valueof a trust relationship~Tti from timeti , computed at present
time tn, is given byv(~Ttn) = v(~Tti)e

−(v(~Tti)∆t)2k
, where∆t = tn− ti and k is any small integer≥ 1.

23
20

keyter
Text Box

The valuek determines the rate of change of trust with time and is assigned by the truster based
on its perception about the change. If∆t = 0 that is attn = ti , e−(v(~Tti)∆t)2k

= 1 and henceTn =

Ti . When ∆t → ∞, then e−(Ti∆t)2k
→ 0 and henceTn → 0. This corroborates the fact the time-

dependent value of the last known trust value is asymptotic to zero at infinite time. The parameter
k is specified by the truster’sdynamic policyregarding the trustee in the specific context.

To obtain the trust vector~Ttn at timetn, we distribute the valuev(~Ttn) evenly over the compo-
nents. The rational behind this is that betweenti andtn we do not have sufficient information to
assign different weights to the different components. Thuswe have the time-dependent vector as
~Ttn = [

v(~Ttn)
3 ,

v(~Ttn)
3 ,

v(~Ttn)
3].

2.2.8 Trust vector at present time

The trust of a trusterA on a trusteeB in a contextc at timetn depends not only on the underlying
components of the trust vector but also on the trust established earlier at timeti . Consider for
example that at timeti NID local trusts NID1 to the fullest extent (value= 1). At time tn NID local

re-evaluates the trust relationship and determines the value to be -0.5 (distrust). However, we
believe that NIDlocal will lay some importance to the previous trust value and willnot distrust
NID1 as much as a -0.5 value. So, the normalized trust vector attn is a linear combination of
time-dependent trust vector and the normalized trust vector calculated at present time. The weight
NID local will give to old trust vector and present normalized trust vector is, again, a matter of
policy. This is specified as thehistory_weight policyof the truster which consists of two values,
α andβ corresponding to the present normalized trust vector and the time-dependent vector. This
leads us to refine the expression for normalized trust vectorat time tn as follows. LetT̂ be the
time-dependent trust vector derived from(~Tti) at timetn.

Definition 16 The normalized trust relationship between a trusterA and a trusteeB at timetn in a
particular contextc is given by

(A
c

−→ B)N
tn =

[ˆAEc
B, ˆAKc

B, ˆψRc
B] if tn = 0

[v(T̂)
3 ,

v(T̂)
3 ,

v(T̂)
3] if tn 6= 0 and ˆAEc

B = ˆAKc
B = ˆψRc

B = 0

α · [ˆAEc
B, ˆAKc

B, ˆψRc
B]+β · [v(T̂)

3 ,
v(T̂)

3 ,
v(T̂)

3]

if tn 6= 0 and at least one of̂AEc
B, ˆAKc

B, ˆψRc
B 6= 0

(2.7)

whereα ·[ˆAEc
B, ˆAKc

B, ˆψRc
B]+β·[v(T̂)

3 ,
v(T̂)

3 ,
v(T̂)

3] = [α · ˆAEc
B +β · v(T̂)

3 ,α · ˆAKc
B +β · v(T̂)

3 ,α · ˆψRc
B +β · v(T̂)

3],
α,β ∈ [0,1] andα+β = 1.

24
21

keyter
Text Box

2.3 Comparison Operation on Trust Vectors

We are now in a position to determine the relative trustworthiness of two trustees. The need for
such comparison occurs in many real life scenarios. Consider the following example. Suppose
entity A gets two conflicting pieces of information from two different sourcesB andC. In this
caseA will probably want to compare its trust relationships with entities B andC and accept
the information that originated from the “more” trustworthy entity. This motivates us to define a
comparison operator on trust relationships.

Let T andT ′ be two normalized trust relationships at timet. We introduce the following notion
of compatibility between two trust relationships.

Definition 17 Two trust relationships,T andT ′ are said to becompatibleif the trust relationships
have been defined under the same trust evaluation policy vector, the trust relationships are at the
same time instances, and the contextc(T) for the trust relationshipT is the same as the context
c(T ′) for T ′, that isc(T) = c(T ′). Otherwise the two trust relationships are said to beincompatible.

Note that the definition of compatibility between two trust relationships does not explicitly
involve information about the trusters or trustees. However, since the trust relationships are being
compared under the same trust evaluation policy vector theymust involve the same truster. The
most intuitive way to compare two trust relationshipsT andT ′ is to compare the values of the trust
relationships in a numerical manner. Thus forA to determine the relative levels of trustworthiness
of B andC, A evaluates v(A c

−→ B)N
t and v(A c

−→ C)N
t . If v(A

c
−→ B)N

t > v(A
c

−→ C)N
t , thenA

trustsB more thanC in the contextc. We say thatT dominates T′, given byT � T ′. However,
if v(A

c
−→ B)N

t = v(A
c

−→ C)N
t , A cannot judge the relative trustworthiness ofB andC. This is

because there can be two vectors whose individual componentvalues are different but their scalar
values are the same. For such cases we need to compare the individual elements of the two trust
relationships to determine the relative degree of trustworthiness. In addition, for the same reasons,
it is better to determine relative trustworthiness ofB andC on the basis of component values rather
than breaking the tie arbitrarily.

Let (A c
−→ B)N

t = [ˆAEc
B, ˆAKc

B, ˆψRc
B] and(A

c
−→C)N

t = [ˆAEc
C, ˆAKc

C, ˆψRc
C] such that v(A c

−→B)N
t =

v(A
c

−→C)N
t . Let also the underlying trust evaluation policy vector be given byAW = (w1,w2,w3)

wherew1 +w2 +w3 = 1 andwi ∈ [0,1] ∀i = 1,2,3. To determine the dominance relation between
T andT ′ we first determine theorderedtrust relationships̄T andT̄ ′ corresponding toT andT ′.

Definition 18 Theorderedtrust relationship̄T is generated from a normalized trust relationshipT

as follows:

25
22

keyter
Text Box

1. Order thewi ’s in the trust evaluation policy vector corresponding toT in descending order
of magnitude.

2. Sort the components of the trust vectorT according to the corresponding weight components.

We compare the two ordered trust relationshipsT̄ andT̄ ′, corresponding toT andT ′, component-
wise to determine the dominance relation between the two. Note that we assume that the same
underlying trust evaluation policy vector has been used to determine the trust relationships. If the
first component ofT̄ is numerically greater than the first component ofT̄ ′ thenT � T ′. Else if
the first components are equal then compare the second components. If the second component
of T̄ is greater than the second component ofT̄ ′ thenT � T ′, and so on. If weights are equal
for first two (or, all three) components in the ordered trust relationships, thenT � T ′ only when
both components (or, all three components) ofT are numerically greater than those ofT ′. In the
comparison process we assume that the value⊥ is dominated by all real numbers. If we cannot
conclude a dominance relation between the two trust relationship, then we say that the two trust
relationships areincomparable. This is formalized by the following definition.

Definition 19 Let T andT ′ be two trust relationships and̄T andT̄ ′ be the corresponding ordered
trust relationships. Let alsōTi andT̄ ′

i represent the ith component of each ordered trust relationships
andwi represent theith weight component in the corresponding trust evaluation policy vector.T is
said to dominateT ′ if any one of the following holds:

1. v(T) > v(T ′); or
2. if ∀ i, j, i 6= j, (wi = w j) then∀ i, T̄i > T̄ ′

i ; or
3. if ∃ i, T̄i > T̄ ′

i and fork = 1. . .(i−1), T̄i−k 6< ¯T ′
i−k

OtherwiseT is said to beincomparablewith T ′.

2.4 Combining Trust Relationships

We have defined a basic trust relationship as a binary relation between two different entities – a
truster and a trustee. However, today’s world of information exchange involves many coopera-
tive entities in a relationship within a specified context. Combination of trust is needed for the
interoperability of these cooperating agents. Whenever a group of agents are working together,
combination of their individual trust relationship is necessary to have an idea about the expected
behavior of the group. Keeping this in mind we now formalize combination operators for trust rela-
tionships. Different possibilities like one-to-many, many-to-one, and many-to-many relationships
are addressed. We also formalize the effect of reconfiguration of these groups on the corresponding

26
23

keyter
Text Box

trust relationships.

2.4.1 Trust relationship between a truster and a group of trustees

In real life, we often encounter situations where we have to take decisions based on information
coming from different sources. Consider the scenario wherean entity has existing trust relation-
ships with different service providers for a particular service. The truster expects some service
which is provided collectively by the service providers. The truster has some expectation from
each individual provider. To have an idea about the service provided by the group, the combined
trust of the service providers needs to be estimated. Therefore, the receiver needs a mechanism
to combine the existing trust relationships to estimate an initial composite trust relationship. The
group of service providers is considered as a single entity (trustee). Once the combination is done,
the truster no longer considers the trust relationships with individual trustee. The truster begins
with the combined group as a single entity and subsequently atrust relationship with the group
evolves.

Let an entityA have trust relationships with two different entitiesB andC in the same context
c at time t.A decides to have a trust relationship with the combined groupBC in the same context.
It is clear that individual trust relationships of bothB andC will have effect on the resulting trust
vector. However, the individual trust relationships will have different degrees of effect. This is
represented byA putting different weights on the trustees to evaluate theirrelative importance
in the trustee group. Once the group is formed the trust(A

c
−→ BC)N

t evolves as a new trust
relationship. Thus we define theinitial trust relationship betweenA andBC in contextc as follows.

Definition 20 Let at timet a trusterA have two trust relationships,(A c
−→ B)N

t and(A
c

−→ C)N
t

with trusteesB andC respectively. If⊕ is thetrust combination operatorthen the trust relationship
betweenA and the groupBC is defined as(A c

−→ BC)N
t = (A

c
−→ B)N

t ⊕ (A
c

−→C)N
t .

A trustee group policyspecifies the non-negative weights of experience, knowledge and recom-
mendation for all individual trustees within the group. Thetrust combination operator is spec-
ified as follows. For each component of the combined trust vector (A

c
−→ BC)N

t , the operator
⊕ takes a weighted sum of respective components of(A

c
−→ B)N

t and (A
c

−→ C)N
t . The sum

of the weights for each component equals 1. Thus, if(A
c

−→ B)N
t = (ˆAEB, ˆAKB, ˆψBRB),(A

c
−→

C)N
t = (ˆAEC, ˆAKC, ˆψCRC) be the trust vectors, then the combined vector is given by(A

c
−→ BC)N

t =

27
24

keyter
Text Box

(ˆAEBC, ˆAKBC, ˆψBCRBC)

ˆAEBC = wE
1 ˆAEB +wE

2 ˆAEC (2.8)

ˆAKBC = wK
1 ˆAKB +wK

2 ˆAKC (2.9)

ˆψBCRBC = wR
1 ˆψBRB +wR

2 ˆψCRC (2.10)

Here,wE
1 +wE

2 = 1, wK
1 +wK

2 = 1 andwR
1 +wR

2 = 1. The weightswcomp
i is weight assigned toith

trustee for the componentcomp∈ {E,K,R} andwcomp
i ∈ [0,1]∀i, ∀comp.

Note that,A has two groups of recommendersψB and ψC for B andC respectively. There
are five relations possible for these two groups, namely 1.ψB = ψC 2. ψB∩ψC = /0 3. ψB ⊂ ψC

4. ψB ⊃ ψC 5.ψB∩ψC 6= /0 and none of 1, 3, 4 hold. The trusterA forms a new list of recommender
ψBC for the combined groupBC where,ψBC = ψB∪ψC, irrespective of the above five relations
betweenψB andψC. If the truster hasm trust relationships with trusteesB1,B2, . . . ,Bm, we can
easily generalize the above concept for the group of trusteesG = {B1,B2, . . . ,Bm} as(A c

−→G)N
t =

(A
c

−→ B1)
N
t ⊕ (A

c
−→ B2)

N
t . . .⊕ (A

c
−→ Bm)N

t . The operator⊕ takes the weighted sum of the
corresponding components of the vectors.

2.4.2 Trust relationship between a group of trusters and a single trustee

Next, we address the situation where different trusters having different trust relationships with a
particular entity in a context, form a group. After forming agroup the trusters work as a single
truster entity. We need to define a way to combine these different trust relationships to get the
initial trust for the group. This initial trust gives the starting point of a trust relationship between
two entities (a group and a single trustee). Thereafter, this trust evolves as before. But before
grouping, different trusters have their own policy to evaluate the trustee for the same context. In
other words, though trust context is same, there are different trust policies. Unless all the trusters
agree to a common policy, as well as a common criteria for evaluation, there can not be a single
trust relationship. To achieve this, there should be aconsensusamong the members.

At this stage we need to discuss some issues. Let an entityA andB have trust vectors about
an entityC in some contextc at time t. NowA andB want to collaborate and work as a single
truster. The initial trust for the group in the contextc is derived from their individual relationship
with C. Let A have more experience and knowledge thanB in terms of trust relationship withC in
some contextc. But B has stronger recommendations aboutC. Therefore, for initial group trust,
for experience and knowledge,A will play the major role determining those. The recommendation
component of the initial trust of the group will have more influence of recommendation value of

28
25

keyter
Text Box

B’s trust relationship withC. So, for each component of the trust vector, the group of trusters has an
ordering according to their individual contribution for the component. For each component, they
have to assign weights to each individual truster in the group according to their relative ordering.
How the weights would be assigned is determined by the consensus the group arrives at during the
time of group formation. After that, the components are evaluated for the whole group as a single
entity.

Trust consensus for a group of trusters

Definition 21 The trust-consensusof a group of trusters is defined as the agreement among all
members to build a common basis for evaluating a combined trust relationship.

Let A1,A2, . . . ,Am bem trusters trying to form a group sayG , to build a single trust relationship
with a trusteeB in some common contextc. All these trusters have different trust relationships
with B in contextc at the present timet. So there arem existing trust relationships(A1

c
−→

B)N
t ,(A2

c
−→ B)N

t , . . . ,(Am
c

−→ B)N
t at t. The objective is to get a trust relationship(G

c
−→ B)N

t

whereG = {A1,A2, . . . ,Am}.
The members need to agree to the following things before formation of the group: (i) For each

component, a set of weights to assign relative importance ofthe members. (ii) A common trust
evaluation policy vector to assign weights to each component of combined trust. (iii) A common
interval length to determine experience, as well as trust. (iv) Common weights for direct knowledge
and reputation in the group trust. (v) A common set of recommenders whom the group consider for
providing recommendation about the trustee. (vi) A common policy to evaluate trust relationship
with a recommender.

For the 5th point above, letψ1, . . . ,ψm bem group of recommenders who have provided rec-
ommendation forB in contextc to the trusterA1, . . . ,Am respectively. Now the groupG of trusters
forms a new groupΨ of recommenders, whereΨ =

Sm
i=1ψi.

Let |Ψ| = k (i.e., there are k distinct recommenders in the group)Ψ. Each of theAi ’s may not
have a trust relationship with all of thesek recommenders (whenψi ∩ψ j = /0, ∀i 6= j). Therefore,
the groupG evaluates trust relationship according to their newly formed policy for establishing

29
26

keyter
Text Box

trust with a recommender. Therefore, we have(G
c

−→ B)N
t = [ˆ

G Ec
B, ˆ

G Kc
B, ˆΨRc

B] where,

ˆG Ec
B =

m

∑
i=1

wE
i . ˆAi E

c
B (2.11)

ˆG Kc
B =

m

∑
i=1

wK
i . ˆAi K

c
B (2.12)

ˆΨRc
B =

m

∑
i=1

wR
i . ˆAi R

c
B (2.13)

Here,wcomp
i ∈ [0,1] and∑m

i=1wcomp
i = 1,∀comp∈ {E,K,R}.

After arriving at atrust-consensus, groupG works as a single entity to work further with the
trusteeB according to their trust-consensus.

2.4.3 Trust relationship between a group of trusters and a group of trustees

We now explore the situation when a group of trustersGr forms a trust relationship with a group
of trusteesGe in some common contextc. Though this is a complicated concept, we can formalize
this by combining the above two cases. Combination can take place in different ways.

1. If the group of trusteesGe already exists, then each trusterAi must already have, or must
build a trust relationship(Ai

c
−→ Ge)

N
t as described in section2.4.1. ThenAi ’s form the

truster groupGr with Ge, consideringGe as a single trustee, as described in section2.4.2.
2. If the truster groupGr already exists withm different trust relationships like(Gr

c
−→ Bi)

N
t

for i = 1,2, . . . ,m, then(Gr
c

−→ Ge)
N
t can be formed as in section2.4.1.

3. If neither group of trusters or trustees exist, either of the group has to be formed first and
then the other group is formed as explained above.

We have defined combination operations for one truster-manytrustees, many trusters-one trustee
and many trusters-many trustees. The group is formed under acommon trust policy. Next we ex-
amine the effect of reconfiguration of a group on the trust relationship.

2.4.4 Reconfiguration of a group

After the group is formed, some member may leave, or some new member may join the group.
This contraction (or, expansion) of the group can happen in steps or, in one instance. That is, old
members can leave one by one or, together. Similarly, new members can join in subsequent time
instances, or as a whole group. We now address the issue of reconfiguration of group of trusters
(or, trustees) over time, and examine its effect on the existing trust relationship.

30
27

keyter
Text Box

Reconfiguration of a trustee group

Let at timetn, there be a trust relationship between a trusterA and a group of trusteesG , where
G = {B1,B2, . . . ,Bm}. Therefore, attn, we have the trust relationship(A c

−→ G)N
tn. Now, let attn+1,

a new trusteeBm+1 join the groupG . Then to build the new trust relationship (rather, we say to
“reconfigure” the existing trust relationship)(A

c
−→ G ′)N

tn+1 whereG ′ = G ∪{Bm+1}, A reassigns
the weights for each component forG andBm+1, according to the trust policy without violating
the existing conditions.A does not combineBm+1 with existingm trustees, rather he combines two
entitiesG andBm+1, treatingG as a single entity. That is, in case of(A

c
−→ G ′)N

tn+1, the weights
wcomp

G ,wcomp
Bm+1

∈ [0,1] andwcomp
G + wcomp

Bm+1
= 1 where, comp∈ {E,K,R}. The trusterA also needs

to update the recommender list by adding the recommenders involved in the trust relationship
(A

c
−→ Bm+1)

N
tn+1.

We now consider the situation where attn+1, instead of joining the group, some trusteeBi leaves
the group. That is,G ′ = G −{Bi} for somei ∈ {1,2, . . . ,m}. Then the truster needs not to change
the policy to evaluate the trust relationship. Because, after the trustee group is formed, truster
considers the trustee group as a single entity. This trust relationship has evolved over time and
removal of a trustee does not change the truster’s policy of trust evaluation. The trust relationship
will evolve further with the reduced trustee group. Impact of absence of a trustee on the trust
relationship is noticed accordingly.

The above ideas can easily be extended if a group of new trustees (i.e., more than one new
trustee) join (or, leave) the existing group of trustees at atime. If a new group of trustersG ′′ joins,
thenG ′ = G ∪G ′′ whereG ′′ = {Bm+1, . . . ,Bn} andn > m. The recommender’s list is also updated
accordingly. If a subgroupG ′′ of trustees leaves the groupG (G ′′ ⊂ G), thenG ′ = G −G ′′.

Reconfiguration of a truster group

Let at timetn, there be a trust relationship between a group of trustersG and a trusteeB, where
G = {A1,A2, . . . ,Am}. Therefore, attn, we have the trust relationship(G c

−→ B)N
tn. Now, let at

tn+1, a new trusterAm+1 joins the groupG . The new groupG ′ = G ∪{Am+1} builds a new trust
relationship(G ′ c

−→ B)N
tn+1 with B. SinceG is a group that has been formed earlier, attn+1 we

no longer consider individual component values for all truster. The reason is, whenever a group
is formed, at the time of formation, the members are ranked according to their relative importance
for each component. After formation each member works in thesame way as other with the
trustee. So, after formation there is no discrimination among the existing group members. A trust-
consensus is made between the two truster entities,G andAm+1. The component values of the new
trusterAm+1 is, therefore compared to the corresponding component values of the groupG . Am+1

31
28

keyter
Text Box

may be a newcomer in the field (with less experience and knowledge) or may be senior enough
to get more importance than the formed groupG , when he is about to joinG . In the latter case,
in (G ′ c

−→ B)N
tn+1,Am+1 will have higher weights for the components in which he dominates.The

agreement between the joining member and the group determines the relative importance of the
two entities in that trust relationship.

This idea is easily extended to the situation where attn+1 more than one new truster joinG . In
that case,G ′ = G ∪G ′′ whereG ′′ = {Am+1, . . . ,An} andn > m. In this case ordering is done for
each of the component values ofG , andAm+1, . . . ,An. The trust-consensus is made accordingly.

Removal of a truster from the group does not affect the group trust-consensus. The group
continues its trust relationship with the trustee as earlier. The trust evolves over time as before.
Absence of a member does not affect the trust relationship aslong as the trustee group remains
unaltered. It is also true if more than one member leave the group at a time. Changing of group
policy, or arriving at a new trust-consensus depends totally on the group. If a significant number
of members have left the consortium, the existing members may go for a revised agreement on
how to evaluate the trust relationship thereafter. Supposeat time tn we have a trust relationship
(G

c
−→ B)N

tn. Let us assume that at each subsequent time intervals one or more members leave the
group. Then there is a sequence of time{tk} after the timetn such that attn+k only one member
from the group remains inG . Then attn+k, the solitary member can go with the existing trust
policy and scheme to evaluate trust, or he can establish a newone-to-one trust relationship with
the trustee.

32
29

keyter
Text Box

Chapter 3

The VTrust Trust Management System

The “Vector” trust model was presented in the last chapter. To use the model we need a corre-
sponding trust management system. A trust management system is a comprehensive framework
designed to facilitate the specification, analysis and management of trust relationships. It focuses
on specifying and interpreting security policies, credentials, and relationships. The trust manage-
ment system also provides trust establishment, trust evaluation, trust monitoring and trust analysis
services. These require, among others, a language to specify trust relationships and a mechanism
to store and manipulate the same. In this chapter, we describe the trust management system that
we have developed to accompany the new trust model. We call the systemVTrust (from Vector
Trust model) trust management system. Major components of the trust management system in-
clude a database engine to store and manage trust data, a trust specification engine for defining and
managing trust relationships, a trust analysis engine to process results of a trust query, a trust eval-
uation engine for evaluating trust expressions and a trust monitor for updating trust relationship
information in the database engine. We have also developed an SQL like language, calledTrustQL,
to interact with the trust management system.

3.1 The VTrust System Architecture

The high level system architecture consists of the components as shown in the following figure3.1.
Values of the different parameters needed for the computation of trust relationships are main-

tained in the VTrust database. The truster interacts with the trust management system through
the external interface. The communication is done using thelanguage TrustQL that we have de-
veloped. The TrustQL language parser in the interface parses the command and sends it to the
appropriate component in the next layer. This layer has the following major components. Aspeci-

33
30

keyter
Text Box

Database

Equivalent SQL
Commands

Query
Results

Data
Manager

Query
Processor

TrustQL - SQL
Cross Compiler

Equivalent SQL
Commands

Trust Updates
and Queries

Analysis
Engine

Specification
Server

Evaluation
Engine

Trust
Specification

Trust
Monitor

TrustQL
Interface

External Interface

Updates

Updates and
Queries

Figure 3.1: Trust Management System Architecture

fication serveris managing and updating the trust database schema. Theanalysis engineprocesses
all trust related queries. It interacts with specification server and anevaluation engine. The lat-
ter is responsible for computing trust related informationaccording to the underlying model. The
evaluation engine takes a parsed trust query string, finds the associated information and policy,
and returns the final trust vector and value to the analysis engine. Thetrust monitoris responsi-
ble for acquiring relevant trust formulation parameters. It maintains the VTrust database, updates
the trust data while truster and trustee interacts with eachother and also updates periodically trust
component values like experience and knowledge.

All these information (trusters, trustees, recommenders,policies and trust parameter informa-
tion) are stored in the VTrust database. The database is implemented as described in section3.2.

34
31

keyter
Text Box

Since TrustQL can not interact with the database directly, an SQL translator beneath the compo-
nent layer does this job. The specification server, analysisengine and evaluation engine takes a
trust operation specified in TrustQL and maps the command to an equivalent SQL command to
interact with the underlying database. After receiving an answer from the database, each of those
components again does a reverse mapping to output the answerin terms of TrustQL.

The following algorithm is used by a truster to compute the trust relationship with a trustee for
a given context at any given time.

Algorithm 1
1. If not already available, initialize the truster’s trustevaluation policy corresponding to the

trustee and the specific context. If needed update the same toreflect current circumstances.

2. Initialize dynamic policy and history_weight policy if not already available. Update as
needed.

3. Compute truster’s experience with trustee.

(a) Determine last point in time when trust was evaluated forcurrent trustee in the given
context. If such a time exists call ittlast.

(b) Read off experience values from database starting from most recent first till eithertlast

or start of experience table.

(c) Apply experience policy to evaluate current experiencevalue.

4. Compute truster’s knowledge with trustee by applying knowledge policy to current direct
knowledge and reputation values.

5. Compute recommendation value for trustee.

6. Compute truster’s simple trust on trustee using values obtained in steps3 - 5. Apply normal-
ization policy as appropriate to the simple trust.

7. Let trust value attlast be termed Tlast (assuming available); compute decayed value for Tlast

by applying dynamic policy to it.

8. Combine trust values obtained in steps6 and7 using the history_weight policy to get the
truster’s current trust relationship with the trustee in the given context.

9. Record current time of trust evaluation astlast corresponding to this truster, trustee and con-
text.

35
32

keyter
Text Box

3.2 Conceptual Trust Model

Conceptually, we can model the underlying trust componentsusing an Entity-Relationship model.
The relational entities include ENTITY, TRUST, CONTEXT, EVENTS, EXPERIENCE, KNOWL-
EDGE, RECOMMENDATION, EXP_POLICY, KNOW_POLICY, NORMAL_POLICY, DYN_POLICY
and HIST_WT_POLICY. All these entities are represented as table in a relational database with
columns representing the ‘attributes’ of those relationalentities.

In subsequent sections, we discuss the relationship between the entities in the model. We
will represent a relational entity and its corresponding table in CAPS and the attributes will be
represented initalics.

3.2.1 Inter-relationship of relational entities

ENTITY includes Truster, Trustee, or Recommender asrole. A TRUST involves aTruster, a
Trustee, aContext, and is evaluated on a particularDate. TRUST depends on the following entities
and relationships: EXPERIENCE, KNOWLEDGE, RECOMMENDATION, NORMAL_POLICY,
DYN_POLICY and HIST_WT_POLICY. All these involve the sameTruster, Trustee, Context,

Dateas in TRUST.
EXPERIENCE depends on EVENTS and EXP_POLICY and returns aEvalue. The entity

EVENTS is a log of events happened between the truster and thetrustee in the context during a cer-
tain interval of time. EXP_POLICY specifies the length of time interval. KNOWLEDGE returns
Kvaluewhich is evaluated based on KNOW_POLICY which determines weights for direct knowl-
edge (Dknol_wt) and reputation (Repu_wt). RECOMMENDATION (i.e., theR_score) is evaluated
based on value returned by the recommender (Reco_value) and the recommender’s weight (Rec-

ommender_wt) according to the truster. These three values (i.e.,Evalue, Kvalue, R_score) are
normalized according to the NORMAL_POLICY. They are multiplied with their corresponding
weights –Exp_wt, Knol_wt,andReco_wt. The DYN_POLICY determines the parameterk to get
the current value of the last available trust value. A vectorfrom this trust history is derived and
HIST_WT_POLICY specifies weights to be assigned to this vector and the former normalized
vector. Composition of these two vectors results in actual trust vector with componentsExp_score,

Knol_score, Reco_scoreand they, in turn, returnTrust_valuebetween theTrusterand theTrustee

in aContexton a particularDate.
The relationship between different elements is summarizedas follows.

1. A TRUST is always between two ENTITYs – one with aRoleof truster and other withRole

trustee; a truster or a trustee can be associated with zero ormore TRUST.

36
33

keyter
Text Box

R
o
le

k

Truster

Context

DpolDate

DynPol

NpolDate

IS
A

Context

NormPol

Context

HwtPol

Beta

Context

Alpha

HwtPolDate

EventDate

Events

A
ct

o
r

A
ct

o
rN

am
e

ExpWt

KnolWt

RecoWt

Context

ExpPol
TimeperiodLn

ExpPolDate

Recommendation Context

REvalDate

Knowledge DirectKnol

Reputation

RecommenderWt

RecoValue

Events(+) Events(−)

KnowlPol

Context

KpolDate

RepuWt
DKnolWt

KEvalDate

Context

Recommender

Trustee

Figure 3.2: ER-diagram of the VTrust system

37
34

keyter
Text Box

2. An entity can haveRoleof a truster, trustee or a recommender.

3. A TRUST is always associated with one CONTEXT; a CONTEXT can be associated with
zero or more TRUST.

4. A TRUST (or, aTrust_value) is evaluated based on a policy; Such a policy can be associated
with zero or more TRUST. A policy consists of one experience policy (EXP_POLICY), one
knowledge policy (KNOW_POLICY), one normalization policy(NORMAL_POLICY), one
dynamics policy (DYN_POLICY) and one history_weight policy (HIST_WT_POLICY).
Each one of the parameter policy is associated with zero or more TRUST.

5. A time intervalTimeperiodis related to zero or more EXP_POLICY.

Next we show an example of the database structure with some synthetic data. In all the tables
the primary keys will be inboldface.

3.2.2 The VTrust database structure

For this and subsequent discussion we use a second trust relationship example. Let Alice be de-
veloping a software that has several modules with differentfunctionality. She wants to get every
module tested by an expert software engineer before she merges two modules. Assume that she
assigns this testing responsibility to Bob. Thus, Alice wants to evaluate her ‘trust’ on Bob in the
context of ‘efficiency to test a software’ (say, EST; acronymfor the context) to decide her further
course of action with Bob in the context EST. Alice sets up a trust-relationship with Bob in the
context EST. She thinks of consulting Charlie, her friend and who happens to know Bob, to get his
view about Bob’s efficiency in this context. To store the information Alice creates the table called
ENTITY as shown in Table3.1.

Table 3.1: Initial ENTITY table
Entity_name Role Context_name
Alice Truster EST
Bob Trustee EST
Charlie Recommender EST

Let us assume that Alice starts interacting with Bob from 1st January, 2004. She decides to keep
track of events occurred between her and Bob in monthly basis. Alice forms her EXP_POLICY as
shown in Table3.2.

38
35

keyter
Text Box

Table 3.2: Alice’s experience policy
Truster Trustee Context Epol_Date Timeperiod
Alice Bob EST 01/01/2004 1 month

Alice also sets up her knowledge policy regarding Bob. She decides to assign 70% weight on
direct knowledge and 30% to indirect knowledge she gets about Bob regarding EST. Therefore,
her KNOW_POLICY table looks like

Table 3.3: Alice’s knowledge policy
Truster Trustee Context Kpol_Date Dknol_wt Repu_wt
Alice Bob EST 06/30/2004 0.7 0.3

Alice can set her knowledge policy anytime before the first time she evaluates trust for Bob in
EST. She can also set the normalization policy anytime priorto first evaluation of trust for Bob in
EST. Let she have the NORMAL_POLICY as shown in Table3.4.

Table 3.4: Alice’s normalization policy
Truster Trustee Context Npol_Date Exp_wt Knol_wt Reco_wt
Alice Bob EST 10/31/2004 0.5 0.3 0.2

Now let us assume that Alice evaluates Bob’s trust in EST for the first time on 31st December,
2004. On that day her EVENTS table looks like Table3.5.

Alice next builds the EXPERIENCE, KNOWLEDGE, and RECOMMENDATION databases.
The EXPERIENCE table looks like Table3.6.

She also assigns two values for direct knowledge and reputation for Bob in EST. During the
year Alice might make several visits to Bob’s office to get idea about Bob’s infrastructure; she
checks tools and techniques used by Bob for testing. She might heard about Bob’s efficiency in the
job. Based on these information Alice assigns those two values according to her own judgment.
The knowledge value is calculated based on the two values sheprovides and their corresponding
weights specified in Table3.3.

Before evaluating trust Alice consults Charlie to get his view on Bob in the context of EST.
Charlie returns his judgment about Bob a recommendation value to Alice. Alice evaluates Char-
lie’s recommendation on the basis of the trust she has on Charlie in the context of “providing a
recommendation”. Here we assume that a trust relationship between Alice and Charlie has already
been set up prior to Bob’s trust evaluation. Therefore, RECOMMENDATION table is of the form
of Table3.8.

39
36

keyter
Text Box

Table 3.5: Alice’s EVENTS table on 31st December, 2004
Truster Trustee Context Startdate Enddate Events(+) Events(-)
Alice Bob EST 01/01/2004 01/31/2004 3 1
Alice Bob EST 02/01/2004 02/29/2004 2 1
Alice Bob EST 03/01/2004 03/31/2004 1 3
Alice Bob EST 04/01/2004 04/30/2004 0 3
Alice Bob EST 05/01/2004 05/31/2004 2 0
Alice Bob EST 06/01/2004 06/30/2004 3 0
Alice Bob EST 07/01/2004 07/31/2004 0 2
Alice Bob EST 08/01/2004 08/31/2004 0 0
Alice Bob EST 09/01/2004 09/30/2004 0 0
Alice Bob EST 10/01/2004 10/31/2004 0 1
Alice Bob EST 11/01/2004 11/30/2004 2 0
Alice Bob EST 12/01/2004 12/31/2004 0 0

Table 3.6: Alice’s experience value on 31st December, 2004
Truster Trustee Context Eval_Date Evalue
Alice Bob EST 12/31/2004 0.1543

Now Alice evaluates actual trust vector as well as the trust value based on these information. All
these component values are normalized before calculating the trust value with the values available
from Table3.4. These calculations are internal to the system, and not of Alice’s responsibility.
Hence, the final TRUST table of Alice for Bob in the context ESTon 31st December, 2004 is
shown in Table3.9.

Let us assume that Alice again wants to evaluate Bob after 4 months. Therefore, on 30th

April, 2005 she wants to have a trust for Bob in the same context EST. We assume that after
evaluating trust on 31st December, she purges all events prior to that date and start keeping log
afresh. Rationale is at any later time, her decision would beinfluenced by the previous trust value.
She does not need the whole set of events to derive current trust value. Only the events after the
previous evaluation are considered to evaluate current experience. We also assume that she has not
changed any policy and nothing happened between her and Bob during these 4 months. Hence the
EVENTS and EXPERIENCE tables will look like Table3.10and Table3.11respectively.

Let us assume that Alice changes the values assigned to direct knowledge and reputation on the
basis of her current judgment. So she adds a new entry to the KNOWLEDGE table and the table
takes the form as shown in Table3.12.

Also let us assume that the trust relationship of Alice with Charlie on the context of “providing
a recommendation” changes from 0.8 to 0.7 and this time Charlie returns a lower value 0.4 for Bob

40
37

keyter
Text Box

Table 3.7: Alice’s knowledge value on 31st December, 2004
Truster Trustee Context Eval_Date Direct_knol Reputation Kvalue
Alice Bob EST 12/31/2004 0.8 0.2 0.62

Table 3.8: Alice’s recommendation score on 31st December, 2004
Truster Trustee Context Eval_Date Recommender_nameReco_valueRecommender_wtR_score
Alice Bob EST 12/31/2004 Charlie 0.55 0.8 0.44

in the context EST. Hence we have new RECOMMENDATION table asshown in Table3.13.
Now the trust value evaluated earlier (i.e., on 31st December, 2004) will have effect on Alice’s

present decision. For that Alice has to form the dynamic policy which gives the current ‘level’ of
the previous value. Alice can form this table DYN_POLICY anytime before 30th April, 2005. Let
us assume that Alice setk in DYN_POLICY as 1. This is presented in Table3.14.

To combine the vector having current value of the parameterswith the vector derived from
the time-affected value of trust, Alice needs to form HIST_WT_POLICY on or before 30th April,
2005 to put relative weight on these two vectors. Let us assume that Alice put 60% weight to the
vector with currently evaluated values and rest 40% to the vector derived from the time-affected
value. It is shown in Table3.15.

The final trust table on 30th April, 2005 is presented in Table3.16.
Alice keeps on adding a new entry in the tables everytime she evaluates Bob’s trust vector in

EST. How long the tables should be allowed to grow depends on particular implementation and
storage space available. The model does not dictate that. Instead of keeping the old records, it
is quite possible to update (replace) previous record with current records. Similarly, in the policy
tables old records can be kept or replaced by new records. Butin TRUST table, at least the previous
old record must be kept to use it later for trust dynamics.

The above calculations involved in the evaluation of components or trust value are inherent in
the analysis engine which is a part of the high level system architecture for the trust management
system.

41
38

keyter
Text Box

Table 3.9: Alice’s trust on Bob in the context EST on 31st December, 2004
Truster Trustee Context Eval_Date Experience Knowledge Reco_scoreTrust_value
Alice Bob EST 12/31/2004 0.077 0.186 0.088 0.351

Table 3.10: Alice’s EVENTS table on 30th April, 2005
Truster Trustee Context Startdate Enddate Events(+) Events(-)
Alice Bob EST 01/01/2005 01/31/2005 0 0
Alice Bob EST 02/01/2005 02/29/2005 0 0
Alice Bob EST 03/01/2005 03/31/2005 0 0
Alice Bob EST 04/01/2005 04/30/2005 0 0

Table 3.11: Alice’s experience value on 30th April, 2005
Truster Trustee Context Eval_Date Evalue
Alice Bob EST 12/31/2004 0.1543
Alice Bob EST 04/30/2005 0.0

Table 3.12: Alice’s knowledge value on 30th April, 2005
Truster Trustee Context Eval_Date Direct_knol Reputation Kvalue
Alice Bob EST 12/31/2004 0.8 0.2 0.62
Alice Bob EST 04/30/2005 0.9 0.1 0.66

Table 3.13: Alice’s recommendation score on 30th April, 2005
Truster Trustee Context Eval_Date Recommender_nameReco_valueRecommender_wtR_score
Alice Bob EST 12/31/2004 Charlie 0.55 0.8 0.44
Alice Bob EST 04/30/2005 Charlie 0.4 0.7 0.28

Table 3.14: Alice’s dynamic policy
Truster Trustee Context Dpol_Date k
Alice Bob EST 03/31/2005 1

Table 3.15: Alice’s policy on assigning weights to previoustrust value at current time
Truster Trustee Context Hwtpol_Date Alpha Beta
Alice Bob EST 04/01/2005 0.6 0.4

Table 3.16: Alice’s trust on Bob in the context EST on 30th April, 2005
Truster Trustee Context Eval_Date Experience Knowledge Reco_scoreTrust_value
Alice Bob EST 12/31/2004 0.077 0.186 0.088 0.351
Alice Bob EST 04/30/2005 0.0064 0.4024 0.1744 0.5832

42
39

keyter
Text Box

Chapter 4

TrustQL: The VTrust Query Language

Users of the VTrust trust management system need a language to interact with the system. The
The language should be able to interact with the database implementation of the model. Therefore,
we introduce a trust language similar to Structured Query Language (SQL). We call this language
as TrustQL. The reason behind choosing this kind of languageis as follows:

• We can think of the underlying data as a relational data structure. An instance of trust
between truster and trustee can be saved in a row; truster, trustee, trust policy and context can
be considered as individual field. Experience, knowledge and recommendation information
can be considered as relations referencing corresponding relation.

• Language such as SQL processes sets of data as groups rather than as individual units. We
need to consider all relevant experience, knowledge and recommendation as a whole in order
to calculate the final trust level. Data as a group is more important than individual data unit.

• TrustQL uses statements that are complex and powerful individually, and that therefore stand
alone.

• TrustQL differs from general purpose procedural language such as C and Java in that users
specify what they want instead of how to get the result. It is up to the trust system engine to
manipulate the data and present the final trust value to end users. From the user’s point of
view, this approach makes it easy to interact with the trust management system.

Trust query language (TrustQL) consists of Trust DefinitionLanguage (TDL) and Trust Ma-
nipulation Language (TML). TDL is used to create, alter and drop entities, policies, parameters
and context. TML is used to add, modify and delete trust record as well as query the trust engine
to get trust value.

43
40

keyter
Text Box

Convention Used for
UPPERCASE TrustQL keywords.
italic User-supplied parameters of TrustQL syntax.
| (vertical bar) Separating syntax items within brackets or braces.

Only one of the items can be chosen.
[] (brackets) Optional syntax items. Do not type the brackets.
(braces) Required syntax items. Do not type the braces.
[,...n] Indicating that the preceding item can be repeated n

number of times. The occurrences are separated by
commas.

[....n] Indicating that the preceding item can be repeated n
number of times. The occurrences are separated by
periods.

[...n] Indicating that the preceding item can be repeated n
number of times. The occurrences are separated by
blanks.

bold Parameter names, context names, and text that must
be typed exactly as shown.

<label> ::= The name for a block of syntax. This convention is
used to group and label portions of lengthy syntax or
a unit of syntax that can be used in more than one
place within a statement. Each location in which the
block of syntax can be used is indicated with the label
enclosed in angle brackets.

Table 4.1: TrustQL Syntax Convention

Trust Definition Language (TDL) consists of TrustQL keywords, Identifiers, Statements, and
TrustQL convention. User-defined structures, such as entity, group and trust context name, cannot
use the same identifier as keyword. The complete set of TrustQL keywords is given in section4.1.

Definition 22 A TrustQL statement is an expression that defines a TrustQL command, such as
SELECT, UPDATE, DELETE, etc. and may include clauses such asFROM, BETWEEN, AND
etc. and other TrustQL keywords.

Trust Manipulation Language (TML) consists of commands like INSERT, UPDATE, DELETE,
SELECT, and commands to query trust value after the trust management system has been set up
using Trust Definition Language.

The conventions used in TrustQL are shown in Table4.1.

44
41

keyter
Text Box

4.1 TrustQL Keywords

Table4.2summarizes the TrustQL keywords. The syntax of the keywordsfollows in table

Table 4.2: List of TrustQL keywords

AND ALTER AS
ASPECT BETWEEN CONTEXT
CREATE DELETE DIRECT
DROP DYNAMICS ENTITY
EXPERIENCE FROM GROUP
HISTORY IN INDIRECT
INSERT KNOWLEDGE MEMBER
NOT NULL OR
POLICY PURPOSE RECOMMENDATION
SELECT SET TO
TRUST TRSUTEE TRSUTER
TRUSTS VALUES WHEN
WHO WEIGHT

Table 4.3: Detailed syntax of TrustQL keywords

ALTER CONTEXT { old_context_name }

TO { new_context_name }

[PURPOSE ({[NOT]purpose}[{AND | OR}{[NOT]purpose}])]

[ASPECT ({aspect}[,...n])]

ALTER DYNAMICS POLICY

{trust_dynamics_name}

[TO {new_trust_dynamics_name}]

[AS

{new_integer_number}]

(continued on next page)

45
42

keyter
Text Box

Table 4.3: (continued)

ALTER ENTITY

{old_entity_name}

TO

{new_entity_name}

ALTER HISTORY POLICY

{old_history_policy_name}

[TO {new_history_policy_name}]

[AS

{real_number1, real_number2}]

ALTER EXPERIENCE POLICY

{experience_policy_name}

[TO {new_experience_policy_name}]

[({ FROM time1 TO time2}[,...n])

WEIGHT

({ positive_real_number }[,...n])]

ALTER HISTORY POLICY

{old_history_policy_name}

[TO {new_history_policy_name}]

[AS

{real_number1, real_number2}]

(continued on next page)

46
43

keyter
Text Box

Table 4.3: (continued)

ALTER KNOWLEDGE POLICY

{old_knowledge_policy_name}

[TO {new_knowledge_policy_name}]

[WEIGHT

(new_direct_knowledge_value, new_indirect_knowledge_value)]

ALTER POLICY

{ old_policy_name }

[TO {new_policy_name }]

[WEIGHT

{(experience_weight, knowledge_weight, recommendation_weight)}

EXPERIENCE POLICY {experience_policy_name}

KNOWLEDGE POLICY {knowledge_policy_name}

RECOMMENDATION POLICY {recommendation_policy_name}

DYNAMICS POLICY {dynamics_policy_name}

HISTORY POLICY {history_policy_name}

]

ALTER RECOMMENDATION POLICY

{ recommendation_policy_name }

[TO {new_recommendation_policy_name}]

[({ recommender} [,...n])

WEIGHT

({ positive_real_number }[,...n])]

(continued on next page)

47
44

keyter
Text Box

Table 4.3: (continued)

ALTER TRUSTEE GROUP POLICY

{group_policy_name}

[TO {new_group_policy_name}]

[GROUP {group_name}]

[EXPERIENCE WEIGHT ({member_experience_weight}[,...n])

KNOWLEDGE WEIGHT ({member_knowledge_weight}[,...n])

RECOMMENDATION WEIGHT ({member_recommentation_weight}[,n])]

ALTER TRUSTER GROUP POLICY

{group_policy_name}

[TO {new_group_policy_name}]

[GROUP {group_name}]

[EXPERIENCE WEIGHT ({member_experience_weight}[,...n])

KNOWLEDGE WEIGHT ({member_knowledge_weight}[,...n])

RECOMMENDATION WEIGHT ({member_recommentation_weight}[,...n])]

[POLICY {policy_name}]

CREATE CONTEXT { context_name }

PURPOSE ({[NOT]purpose}[{ AND | OR}{[NOT]purpose}])

ASPECT ({aspect}[,...n])

(continued on next page)

48
45

keyter
Text Box

Table 4.3: (continued)

CREATE DYNAMICS POLICY

{trust_dynamics_name}

AS

{integer_number}

CREATE ENTITY

{ entity_name }

CREATE EXPERIENCE POLICY

{experience_policy_name}

({ FROM time1 TO time2}[,...n])

WEIGHT

({ positive_real_number }[,...n])

CREATE GROUP

{group_name }

MEMBER ({ entity_name [,...n]})

CREATE KNOWLEDGE POLICY

{knowledge_policy_name}

WEIGHT

(direct_knowledge_value, indirect_knowledge_value)

(continued on next page)

49
46

keyter
Text Box

Table 4.3: (continued)

CREATE HISTORY POLICY

{history_policy_name}

AS

{real_number1, real_number2}

CREATE POLICY

{policy_name}

WEIGHT

{(experience_weight, knowledge_weight, recommendation_weight)}

EXPERIENCE POLICY {experience_policy_name}

KNOWLEDGE POLICY {knowledge_policy_name}

RECOMMENDATION POLICY {recommendation_policy_name}

DYNAMICS POLICY {dynamics_policy_name}

HISTORY POLICY {history_policy_name}

CREATE RECOMMENDATION POLICY

{ recommendation_policy_name }

({ recommender} [,...n])

WEIGHT

({ positive_real_number }[,...n])

(continued on next page)

50
47

keyter
Text Box

Table 4.3: (continued)

CREATE TRUSTEE GROUP POLICY

{group_policy_name}

GROUP {group_name}

EXPERIENCE WEIGHT ({member_experience_weight}[,...n])

KNOWLEDGE WEIGHT ({member_knowledge_weight}[,...n])

RECOMMENDATION WEIGHT ({member_recommentation_weight}[,...n])

CREATE TRUSTER GROUP POLICY

{group_policy_name}

GROUP {group_name}

EXPERIENCE WEIGHT ({member_experience_weight}[,...n])

KNOWLEDGE WEIGHT ({member_knowledge_weight}[,...n])

RECOMMENDATION WEIGHT ({member_recommentation_weight}[,...n])

POLICY {policy_name}

DELETE TRUST

BETWEEN {<truster>} AND {<trustee>}

CONTEXT {context_name}

[WHEN {some_date}]

[WHERE <filter_expression>]

<truster>::= {entity_name | group_name}

<trustee>::= {entity_name | group_name}

(continued on next page)

51
48

keyter
Text Box

Table 4.3: (continued)

DROP CONTEXT

{ context_name }

DROP DYANMICS POLICY

{trust_dyancmics_name}

DROP ENTITY

{ entity_name }

DROP EXPERIENCE POLICY

{experience_policy_name}

DROP GROUP

{group_name }

DROP HISTORY POLICY

{history_policy_name}

(continued on next page)

52
49

keyter
Text Box

Table 4.3: (continued)

DROP KNOWLEDGE POLICY

{knowledge_policy_name}

DROP POLICY

{ policy_name }

DROP RECOMMENDATION POLICY

{recommendation_policy_name}

DROP TRUSTEE GROUP POLICY

{group_policy_name}

(continued on next page)

53
50

keyter
Text Box

Table 4.3: (continued)

INSERT TRUST

BETWEEN {<truster>} AND {<trustee>}

CONTEXT {context_name}

[WHEN {some_date}]

[EXPERIENCE VALUES {(<experience_values>)}]

[KNOWLEDGE VALUES {(<knowledge_values>)}]

[RECOMMENDATION VALUES {(<recommendation_values>)}]

<truster> ::= {entity_name | group_name}

<trustee> ::= {entity_name | group_name}

<experience_values> ::= {time_interval, experience_value} [,...n]

<knowledge_values> ::= {direct_knowledge_value,

indirect_knowledge_value }

<recommendation_values> ::= {<recommender>,recommendation_value}

[,...n]

<recommender> ::= {entity_name | group_name}

(continued on next page)

54
51

keyter
Text Box

Table 4.3: (continued)

SELECT <query_expression>

[WHERE <filter_expression>]

<query_expression>::= <trust_value_query_expression> |

<trust_data_query_expression> |

<component_query_expression>

<trust_value_query_expression> ::= { < trust_value_attrbute_expression > }

[,...n]

BETWEEN {<truster>} AND {<trustee>}

CONTEXT {context_name}

POLICY {policy_name}

[WHEN {some_time}]

<trust_value_attrbute_expression>::= TRUST | TRUSTER | TRUSTEE |

TRUST VALUES | EXPERIENCE VALUES | KNOWLEDGE VALUES |

RECOMMENDATION VALUES | CONTEXT | POLICY | POLICY VALUES

<trust_data_query_expression>::= <trust_data_attrbute_expression>[,...n]

BETWEEN {<truster>} AND {<trustee>}

CONTEXT {context_name}

[POLICY {policy_name}]

[<time_expression>]

<trust_data_attrbute_expression>::= TRUSTER | TRUSTEE |

TRUST VALUES | EXPERIENCE VALUES | KNOWLEDGE VALUES |

RECOMMENDATION VALUES | CONTEXT | POLICY | POLICY VALUES

(continued on next page)

55
52

keyter
Text Box

Table 4.3: (continued)

<truster> ::= {entity_name | group_name}

<trustee> ::= {entity_name | group_name}

<time_expression>::= <time_expression1> | <time_expression2>

<time_expression1>::= WHEN {some_time}

<time_expression2>::= FROM {date1} TO {date2}

<component_query_expression>::= {<truster_query_expression>} |

{<trustee_query_expression>} |

{<context_query_expression>} |

{<policy_query_expression>} |

{<parameter_policy_expression>} |

{<group_policy_expression>}

<truster_query_expression>::= {<truster_attribute_expression>}[,...n]

WHO TRUSTS {<trustee>[{AND | OR}{<trustee>}][...n]}

[CONTEXT {context_name}]

[POLICY {policy_name}]

[<time_expression>]

<truster_attribute_expression>::= {TRUSTER} [CONTEXT | POLICY

|POLICY VALUES | EXPERIENCE VALUES |

KNOWLEDGE VALUES | RECOMMENDATION VALUES]

<trustee_query_expression>::= {<trustee_attribute_expression>}[,...n]

TRUSTED BY {<truster> [{AND | OR}{<truster>}][...n]}

[CONTEXT {context_name}]

[POLICY {policy_name}]

[<time_expression>]

(continued on next page)

56
53

keyter
Text Box

Table 4.3: (continued)

<trustee_attribute_expression>::= {TRUSTEE} [CONTEXT | POLICY

| POLICY VALUES | EXPERIENCE VALUES |

KNOWLEDGE VALUES | RECOMMENDATION VALUES]

<context_query_expression>::= CONTEXT

[CONTEXT {context_name}]

<policy_query_expression>::= POLICY

[POLICY {policy_name}]

<parameter_policy_expression>::={ EXPERIENCE POLICY | KNOWLEDGE

POLICY | RECOMMENDATION POLICY | DYNAMICS POLICY | HISTORY POLICY} [,...n]

[POLICY {policy_name}]

<group_policy_expression> ::= { GROUP POLICY }

GROUP {group_policy}

(continued on next page)

57
54

keyter
Text Box

Table 4.3: (continued)

UPDATE TRUST

BETWEEN {<truster>} AND {<trustee> }

CONTEXT {context_name}

[WHEN {some_date }]

SET {<update_expression>}

[WHERE <filter_expression>]

<truster>::= {entity_name | group_name}

<trustee>::= {entity_name | group_name}

<update_expression>::=

[EXPERIENCE VALUES ({ time_interval, experience_value} [,...n])]

[KNOWLEDGE VALUES ({direct_knowledge_value,

indirect_knowledge_value})]

[RECOMMENDATION VALUES ({recommender, recommendation_value}

[,...n])]

4.2 Trust Definition Language

The Trust Definition Language (TDL) is used to create, alter and drop entities, policies, parameters
and context.

4.2.1 Specifying entity

Definition 23 An entity is any concrete or abstract thing of interest in the trust management sys-
tem. An entity has a unique name.

∀i, j ∈ E, i 6= j ⇔ i.name6= j.name

We use the symbolE to represent all entities.

Definition 24 An active entityis an entity who can initiate a trust evaluation process.

58
55

keyter
Text Box

Definition 25 A passive entityis an entity that can be evaluated by other entities but can’tinitiate
a trust evaluation process.

CREATE ENTITY

{ entity_name }

This command is used to create a new entity.Entity_nameis always required. We assume
that entity name should be unique within its namespace whichcan be defined when the system is
implemented. We also assume that name is the only attribute of an entity although other attributes
may be included during implementation phase. According to our model, an active entity or a
group of active entities can act as a truster or a recommender; any entity or entity group can act as
a trustee.

ALTER ENTITY

{old_entity_name}

TO

{new_entity_name}

This command is used to modify the name of an existing entity.Both old_entity_nameand
new_entity_nameare required. Theold_entity_nameshould also be unique within its namespace.

DROP ENTITY

{ entity_name }

This command is used to remove an existing entity.
Multiple entities can form a group and act as a single entity.The group can become either a

truster or a trustee. Group members can be added or dropped after group formation. There must
be at least one entity within a group. An entity can be membersof multiple groups. A group has
a name which can uniquely identify the group. Group name should be different from entity name;
in other words, entity and group are in the same namespace.

CREATE GROUP

{group_name }

MEMBER ({ entity_name [,...n]})

This command is used to create a new group.Group_nameis always required. One or more
entities must be specified as group members. Multiple members are separated by comma.

59
56

keyter
Text Box

DROP GROUP

{group_name }

This command is used to remove an existing group.Group_nameis always required. If a group
is removed, members in this group will become separate entities again and act independently.

4.2.2 Specifying context

The TrustQL specifications for trust context are as follows.

CREATE CONTEXT { context_name }

PURPOSE ({[NOT]purpose}[{ AND | OR} {[NOT]purpose}])

ASPECT ({aspect}[,...n])

This command is used to create a new context.Context_nameis required and must be unique
among all context names within a trust management system. Atleast one or more purpose must be
specified. We assume that thePurposeandAspectcomponent have been created by the system.

ALTER CONTEXT { old_context_name }

TO { new_context_name }

[PURPOSE ({[NOT]purpose}[{AND | OR} {[NOT]purpose}])]

[ASPECT ({aspect}[,...n])]

This command is used to change the name and/or composition ofan existing context. Both
old_context_nameandnew_context_nameare required. Purpose and aspect can optionally be spec-
ified if they should be modified.

DROP CONTEXT

{ context_name }

This command is used to remove an existing context.Context_nameis required.

4.2.3 Specifying experience

CREATE EXPERIENCE POLICY

{experience_policy_name}

({ FROM time1 TO time2}[,...n])

WEIGHT

({ positive_real_number }[,...n])

60
57

keyter
Text Box

This command is used to define a new experience policy and assign weight to different time
intervals. Experience_policy_nameis required and should be unique within a trust management
system among all policy names. At least one interval must be specified. Multiple time intervals
can not overlap. All numbers must be positive. The number of real numbers must be exactly the
same as the number of intervals. The sum of all real numbers must be one.

ALTER EXPERIENCE POLICY

{experience_policy_name}

[TO {new_experience_policy_name}]

[({ FROM time1 TO time2}[,...n])

WEIGHT

({ positive_real_number }[,...n])

]

This command is used to change the name and/or experience weight. Experience_policy_name

is required.New_experience_policy_nameis optional. If we want to change the experience name,
we need to specify a new policy name; otherwise, leave this blank. The new value will override
the previous value. The number of real numbers must be exactly the same as the number of
intervals. The sum of all real numbers must be one. If we only want to change the policy name,
we only need to specify the new name and ignore the rest of the command. It is invalid if both
new_experience_policy_nameand new experience weight are omitted at the same time.

DROP EXPERIENCE POLICY

{experience_policy_name}

This command is used to remove an existing experience policy. Experience_policy_nameis
required.

4.2.4 Specifying knowledge

CREATE KNOWLEDGE POLICY

{knowledge_policy_name}

WEIGHT

(direct_knowledge_value, indirect_knowledge_value)

This command is used to create a new knowledge policy and assign weight to direct knowledge
and indirect knowledge.Knowledge_policy_nameis required and should be unique within a trust

61
58

keyter
Text Box

management system among all policy names. The weight for direct knowledge and indirect knowl-
edge is assigned todirect_knowledge_valueand indirect_knowledge_valuerespectively. Both
numbers must be positive. The sum ofdirect_knowledge_valueand indirect_knowledge_value

must be one. If either one of them is not applicable, use zero as the corresponding value.

ALTER KNOWLEDGE POLICY

{old_knowledge_policy_name}

[TO {new_knowledge_policy_name}]

[WEIGHT

(new_direct_knowledge_value, new_indirect_knowledge_value)]

This command is used to change the name and/or weight of knowledge policy.Old_knowledge

_policy_nameis required. We can specifynew_knowledge_policy_nameif we want to change its
policy name. Optionally,new_direct_knowledge_valueandnew_indirect_knowledge_valuecan be
specified if we want to update their knowledge weight. The newvalue will override previous value.
The weight for direct knowledge and indirect knowledge is assigned tonew_direct_knowledge_value

andnew_indirect_knowledge_valuerespectively. Both numbers must be positive. The sum of them
must remain one. If we only want to change the policy name, we can just specifyold_knowledge

_policy_nameandnew_knowledge_policy_nameand ignore the rest of the command. It is invalid
if both new_knowledge_policy_nameand new knowledge weight are omitted at the same time.

DROP KNOWLEDGE POLICY

{knowledge_policy_name}

This command is used to remove an existing knowledge policy.knowledge_policy_nameis
required.

4.2.5 Specifying recommendation

CREATE RECOMMENDATION POLICY

{ recommendation_policy_name }

({ recommender} [,...n])

WEIGHT

({ positive_real_number }[,...n])

This command is used to define a new recommendation policy andassign weight to various
recommenders.Recommendation_policy_nameis required and must be unique within a trust man-

62
59

keyter
Text Box

agement system among all policy names. At least one recommender must be specified. All num-
bers must be positive. The number of real number must be exactly the same as the number of
recommenders. The sum of all real numbers must be one.

ALTER RECOMMENDATION POLICY

{ recommendation_policy_name }

[TO {new_recommendation_policy_name}]

[({ recommender} [,...n])

WEIGHT

({ positive_real_number }[,...n])]

This command is used to change recommendation policy name orthe recommender weight.
Recommendation_policy_nameis required.New_recommendation_policy_nameis needed only if
we want to change the policy name. The new value will overridethe previous value. The number of
real number must be exactly the same as the number of recommenders. The sum of all real numbers
must remain one. If we only want to change the policy name, we can only specify the new name
and ignore the rest of the command. It is invalid if bothnew_recommendation_policy_nameand
new recommendation weight value are omitted at the same time.

DROP RECOMMENDATION POLICY

{recommendation_policy_name}

This command is used to remove an existing recommendation policy. The recommenda-

tion_policy_nameis required.

4.2.6 Specifying trust dynamics

CREATE DYNAMICS POLICY

{trust_dynamics_name}

AS

{integer_number}

This command is used to define a new trust dynamic policy and assign an integer value tok.
Trust_dynamics_nameis required and should be unique within a trust management system among
all policy names.Integer_numberare required.

63
60

keyter
Text Box

ALTER DYNAMICS POLICY

{trust_dynamics_name}

[TO {new_trust_dynamics_name}]

[AS

{new_integer_number}]

This command is used to modify the name and/or value of an existing trust dynamics pol-
icy. Trust_dynamics_nameis required. New_trust_dynamics_nameis optional. If we want to
change the name of the policy, specify the new name; otherwise, omit the new name. The
new_integer_numberis also optional. Specify the number only if we want to changethe trust dy-
namics value. It is invalid if bothnew_trust_dynamics_nameandnew_integer_numberare omitted
at the same time.

DROP DYANMICS POLICY

{trust_dyancmics_name}

This command is used to remove an existing trust dynamics policy. Trust_dynamics_nameis
required.

CREATE HISTORY POLICY

{history_policy_name}

AS

{real_number1, real_number2}

This command is used to create a new history policy.history_nameis required and should be
unique within a trust management system among all policy names.Real_number1andreal_number2

are also required. The value ofα andβ is assigned toreal_number1andreal_number2respectively.
Both real_number1andreal_number2should be positive and the sum should be one.

ALTER HISTORY POLICY

{old_history_policy_name}

[TO {new_history_policy_name}]

[AS

{real_number1, real_number2}]

This command is used to modify the name and/or value of an existing history policy.Old_history

_policy_nameis required.New_history_policy_nameis optional. If we want to change the name of

64
61

keyter
Text Box

the policy, specify the new name; otherwise, omit the new name. real_number1andreal_number2

are also optional. Specify the number only if we want to change theα andβ value. It is invalid if
bothnew_history_policy_nameand the two numbers are omitted at the same time.

DROP HISTORY POLICY

{history_policy_name}

4.2.7 Specifying trust evaluation policy

CREATE POLICY

{policy_name}

WEIGHT

{(experience_weight, knowledge_weight, recommendation_weight)}

EXPERIENCE POLICY {experience_policy_name}

KNOWLEDGE POLICY {knowledge_policy_name}

RECOMMENDATION POLICY {recommendation_policy_name}

DYNAMICS POLICY {dynamics_policy_name}

HISTORY POLICY {history_policy_name}

This command is used to create a new trust policy which specifies the weight of three param-
eters, time dynamics policy and history policy.Policy_nameis required and should be unique
among all policies.Experience_weight, knowledge_weightand recommendation_weightare re-
quired and are assigned as experience, knowledge and recommendation weight respectively. The
order is fixed. These three numbers must be positive; the sum of them must be one. When defin-
ing a policy, we must associate an existing experience policy, knowledge policy, recommendation
policy, dynamics policy and history policy with it.

ALTER POLICY

{ old_policy_name }

[TO {new_policy_name }]

[WEIGHT

{(experience_weight, knowledge_weight, recommendation_weight)}

EXPERIENCE POLICY {experience_policy_name}

KNOWLEDGE POLICY {knowledge_policy_name}

RECOMMENDATION POLICY {recommendation_policy_name}

DYNAMICS POLICY {dynamics_policy_name}

65
62

keyter
Text Box

HISTORY POLICY {history_policy_name}

]

This command is used to modify the name of an existing trust policy and/or the weight of
parameters.Old_policy_nameis required. New_policy_nameis optional. New_policy_nameis
not needed if the policy name is not changed.Experience_weight, knowledge_weightand rec-

ommendation_weightare assigned as experience, knowledge and recommendation weight respec-
tively. The order is fixed. All three numbers are required andmust be positive. The sum of all
three numbers must be one. If we only want to change the policyname, we just need to specify
old_policy_nameandnew_policy_nameand ignore the rest of the command. Parameter policy can
also be modified. It is invalid ifnew_policy_nameand parameter policy are omitted at the same
time.

When modifying an existing policy, all components in this policy must be explicitly listed even
if its weight is not changed. If a component in an existing policy is not listed when updating the
policy, its weight will be dropped.

DROP POLICY

{ policy_name }

This command is used to remove an existing policy.Policy_nameis required.

4.2.8 Specifying trustee group policy

CREATE TRUSTEE GROUP POLICY

{group_policy_name}

GROUP {group_name}

EXPERIENCE WEIGHT ({member_experience_weight}[,...n])

KNOWLEDGE WEIGHT ({member_knowledge_weight}[,...n])

RECOMMENDATION WEIGHT ({member_recommentation_weight}[,...n])

This command is used to create a new trustee group policy.Group_policy_nameis required.
Group_nameis also required which refers to an existing group.Member_experience_weightis the
weight for individual group members regarding experience.The sum of allmember_experience_weight

must be one. The number ofmember_experience_weightmust be the same as the number of group
members. The same is true for knowledge weight and recommendation weight.

66
63

keyter
Text Box

ALTER TRUSTEE GROUP POLICY

{group_policy_name}

[TO {new_group_policy_name}]

[GROUP {group_name}]

[EXPERIENCE WEIGHT ({member_experience_weight}[,...n])

KNOWLEDGE WEIGHT ({member_knowledge_weight}[,...n])

RECOMMENDATION WEIGHT ({member_recommentation_weight}[,n])]

This command is used to modify an existing trustee group policy. Group policy name, corre-
sponding group and member weight can be changed.Group_policy_nameis required.New_group

_policy_name, group_nameand member weight are optional.

DROP TRUSTEE GROUP POLICY

{group_policy_name}

This command is used to remove an existing trustee group policy. Group_policy_nameis
required.

4.2.9 Specifying truster group policy

CREATE TRUSTER GROUP POLICY

{group_policy_name}

GROUP {group_name}

EXPERIENCE WEIGHT ({member_experience_weight}[,...n])

KNOWLEDGE WEIGHT ({member_knowledge_weight}[,...n])

RECOMMENDATION WEIGHT ({member_recommentation_weight}[,...n])

POLICY {policy_name}

This command is used to create a new truster group policy.Group_policy_nameis required.
Group_nameis also required which refers to an existing group.Member_experience_weightis the
weight for individual group member regarding experience. The sum of allmember_experience_weight

must be one. The number ofmember_experience_weightmust be the same as the number of group
members. The same is true for knowledge weight and recommendation weight. Policy_nameis
required and used to specify the common policy used by all group members.

ALTER TRUSTER GROUP POLICY

{group_policy_name}

67
64

keyter
Text Box

[TO {new_group_policy_name}]

[GROUP {group_name}]

[EXPERIENCE WEIGHT ({member_experience_weight}[,...n])

KNOWLEDGE WEIGHT ({member_knowledge_weight}[,...n])

RECOMMENDATION WEIGHT ({member_recommentation_weight}[,...n])]

[POLICY {policy_name}]

This command is used to modify an existing truster group policy. Group_policy_name, cor-
responding group, member weight and common policy can be changed. Group_policy_nameis
required.New_group_policy_name, group_name, member weight andpolicy_nameare optional.

DROP TRUSTER GROUP POLICY

{group_policy_name}

This command is used to remove an existing truster group policy. Group_policy_nameis re-
quired.

4.2.10 Specifying group reconfiguration

After the group is formed, some members may leave, or some newmembers may join the group.
This contraction (or, expansion) of the group can happen in steps or, in one instance. That is,
old members can leave one by one or, together. Similarly, newmembers can join in subsequent
time instances, or as a whole group. Reconfiguration of a group is specified according to TDL as
follows:

ALTER GROUP

{old_group_name }

[TO {new_group_name }]

[ADD MEMBER ({entity_name}[,...n]) |

DROP MEMBER ({entity_name}[,...n])]

This command is used to modify the name of an existing group orto change group members.
Old_group_nameis required. The new group name should be unique within entity and group
namespace. Optionally, group membership can be changed. Wecan either add new group members
or drop existing members. Multiple entity names are separated by comma.

68
65

keyter
Text Box

4.3 Trust Manipulation Language

Trust Manipulation Language (TML) is used to insert, update, delete and query trust value after
the trust management system has been set up using Trust Definition Language (TDL).

4.3.1 INSERT trust value

INSERT TRUST

BETWEEN {<truster>} AND {<trustee>}

CONTEXT {context_name}

[WHEN {some_date}]

[EXPERIENCE VALUES {(<experience_values>)}]

[KNOWLEDGE VALUES {(<knowledge_values>)}]

[RECOMMENDATION VALUES {(<recommendation_values>)}]

<truster> ::= {entity_name | group_name}

<trustee> ::= {entity_name | group_name}

<experience_values> ::= {time_interval, experience_value} [,...n]

<knowledge_values> ::= {direct_knowledge_value,

indirect_knowledge_value }

<recommendation_values> ::= {<recommender>, recommendation_value}

[,...n]

<recommender> ::= {entity_name | group_name}

This command is used to insert trust data into the trust management system. Both truster and
trustee are required.Context_nameis also required which specifies the context under which the
trust data was obtained. Date is optional. Whensome_dateis omitted, the current date is used as
the default date. Ifsome_dateis specified, then the data is considered to be obtained at that time.
Only past date can be specified, future date is not allowed as future trust data can’t be predicted.
Experience_valuecan be NULL if the actual value is not available.

4.3.2 UPDATE trust value

UPDATE TRUST

BETWEEN {<truster>} AND {<trustee> }

CONTEXT {context_name}

69
66

keyter
Text Box

[WHEN {some_date }]

SET {<update_expression>}

[WHERE <filter_expression>]

<truster>::= {entity_name | group_name}

<trustee>::= {entity_name | group_name}

<update_expression>::=

[EXPERIENCE VALUES ({ time_interval, experience_value} [,...n])]

[KNOWLEDGE VALUES ({direct_knowledge_value,

indirect_knowledge_value})]

[RECOMMENDATION VALUES ({recommender, recommendation_value}[,...n])]

This command is used to modify existing trust data. Both truster and trustee are required.Con-

text_nameis also required which specifies the context under which the trust data was obtained.
Date is optional. Whensome_dateis omitted, all trust data between truster and trustee under
the context will be updated; ifsome_dateis specified, then the trust data at the specified time is
updated. The format of experience, knowledge and recommendation value is the same as insert
command. The Where clause is optional; it is used to restrictthe trust data to be updated. Fil-
ter_expression specifies the condition to be met for the trust data to be updated. There is no limit
to the number of predicates that can be included in the condition.

4.3.3 DELETE trust value

DELETE TRUST

BETWEEN {<truster>} AND {<trustee>}

CONTEXT {context_name}

[WHEN {some_date}]

[WHERE <filter_expression>]

<truster>::= {entity_name | group_name}

<trustee>::= {entity_name | group_name}

This command is used to delete existing trust data. Both truster and trustee are required.Con-

text_nameis also required to specify the context between truster and trustee. When clause is
optional. If when clause is omitted, then all trust data between the truster and trustee under the
specified context will be deleted; otherwise, only the trustdata happened at the specified time

70
67

keyter
Text Box

is deleted. Where clause is optional. Filter_expression specifies the condition to be met for the
trust data to be deleted. There is no limit to the number of predicates that can be included in the
condition.

4.3.4 SELECT trust value

Applications interacting with trust management system sends query to the trust management sys-
tem. A trust query is essentially a string. The trust evaluation engine will evaluate the query after
the string is parsed and validated. All aspect of the trust management system can be queried such
as trust value, entity, context, policy, etc.

SELECT <query_expression>

[WHERE <filter_expression>]

<query_expression>::= <trust_value_query_expression> |

<trust_data_query_expression> |

<component_query_expression>

<trust_value_query_expression> ::= { < trust_value_attrbute_expression > }

[,...n]

BETWEEN {<truster>} AND {<trustee>}

CONTEXT {context_name}

POLICY {policy_name}

[WHEN {some_time}]

<trust_value_attrbute_expression>::= TRUST | TRUSTER | TRUSTEE |

TRUST VALUES | EXPERIENCE VALUES | KNOWLEDGE VALUES |

RECOMMENDATION VALUES | CONTEXT | POLICY | POLICY VALUES

<trust_data_query_expression>::= <trust_data_attrbute_expression>[,...n]

BETWEEN {<truster>} AND {<trustee>}

CONTEXT {context_name}

[POLICY {policy_name}]

[<time_expression>]

71
68

keyter
Text Box

<trust_data_attrbute_expression>::= TRUSTER | TRUSTEE |

TRUST VALUES | EXPERIENCE VALUES | KNOWLEDGE VALUES |

RECOMMENDATION VALUES | CONTEXT | POLICY | POLICY VALUES

<truster> ::= {entity_name | group_name}

<trustee> ::= {entity_name | group_name}

<time_expression>::= <time_expression1> | <time_expression2>

<time_expression1>::= WHEN {some_time}

<time_expression2>::= FROM {date1} TO {date2}

<component_query_expression>::= {<truster_query_expression>} |

{<trustee_query_expression>} |

{<context_query_expression>} |

{<policy_query_expression>} |

{<parameter_policy_expression>} |

{<group_policy_expression>}

<truster_query_expression>::= {<truster_attribute_expression>}[,...n]

WHO TRUSTS {<trustee>[{AND | OR}{<trustee>}][...n]}

[CONTEXT {context_name}]

[POLICY {policy_name}]

[<time_expression>]

<truster_attribute_expression>::= {TRUSTER} [CONTEXT | POLICY

|POLICY VALUES | EXPERIENCE VALUES |

KNOWLEDGE VALUES | RECOMMENDATION VALUES]

<trustee_query_expression>::= {<trustee_attribute_expression>}[,...n]

TRUSTED BY {<truster> [{AND | OR}{<truster>}][...n]}

[CONTEXT {context_name}]

[POLICY {policy_name}]

[<time_expression>]

<trustee_attribute_expression>::= {TRUSTEE} [CONTEXT | POLICY

72
69

keyter
Text Box

| POLICY VALUES | EXPERIENCE VALUES |

KNOWLEDGE VALUES | RECOMMENDATION VALUES]

<context_query_expression>::= CONTEXT

[CONTEXT {context_name}]

<policy_query_expression>::= POLICY

[POLICY {policy_name}]

<parameter_policy_expression>::={ EXPERIENCE POLICY | KNOWLEDGE

POLICY | RECOMMENDATION POLICY | DYNAMICS POLICY | HISTORY POLICY} [,...n]

[POLICY {policy_name}]

<group_policy_expression> ::= { GROUP POLICY }

GROUP {group_policy}

This command is used to query final trust value, trust data, context, policy, truster, trustee,
context and parameter policy information. The command can take many different forms. There
are several patterns that we should follow when formulatingthe command.

• When querying final trust value, we must specify truster, trustee, context and policy. If when
clause is omitted, the current trust is evaluated, otherwise, trust value is evaluated at the
specified point of time. This time can’t be a future date.

• Trust fact data can be returned without specifying trust policy. Two kinds of formats can be
used. The first one is a specified point of time; the second one is a time interval from two
dates.

• Context, policy and parameter policy can be returned directly.

• Trust group can act as a single truster or a trustee. Whenevera group is involved in a trust
relationship, group policy is used.

• We have defined the return information without specifying the return format. This could be
an implementation decision.

• We define the basic trust query syntax here; however, severalqueries can be combined during
implementation time. For example, we can query CONTEXT and POLICY directly.

73
70

keyter
Text Box

• The above syntax is used by the trust engine. Another layer will be built if the engine
interacts with other systems. In this case, the trust engineacts as a server and other systems
act as clients. The syntax that the clients used will be relatively easy to use and may contain
graphical user interface. Nevertheless, the query string that other applications generated will
have to be transformed into such syntax that the trust enginecan understand.

74
71

keyter
Text Box

Chapter 5

Model Application

The vector trust model is geared towards enhancing securityin systems. We investigated how to
apply this model for such purposes. The problem domain of interest is that of access control in
open and distributed environments. The NAS system of the Federal Aviation Administration is an
example of such a system.

Proper access control to resources is one of the major security concerns for any organization.
Different models of access control have been proposed over the years, for example, discretionary
and mandatory access control models, Clark-Wilson model, Task based models and Role Based
Access Control model. Among these, role based access control (RBAC) [4] is gradually emerging
as the standard for access control. The main advantage of RBAC over other access control models
is the ease of security administration. In the RBAC model access permissions are not assigned
directly to the users but to abstractions known as “roles”. Roles correspond to different job de-
scriptions within an organization. Users are assigned to different roles and, thus, indirectly receive
the relevant permissions. Thus, with RBAC, security is managed at a level corresponding to an
organization’s human resource structure.

Notwithstanding the success of the RBAC model, researchershave often found the model to
be inadequate for open and decentralized multi-centric systems where the user population is dy-
namic and the identity of all users are not known in advance. Examples of such systems are service
providers operating over open systems like the Internet. Itis almost impossible to know before-
hand all the users that will request services in these systems. Assigning appropriate roles to these
users thus becomes an irrational and ad-hoc exercise. To overcome the shortcomings of RBAC
for such systems, researchers have proposed credential-based access control models [2, 1, 7]. Cre-
dentials implement a notion of binary trust. Here the user has to produce a pre-determined set of
credentials (for example, credit card numbers or proof of membership to certain groups etc.) to

75
72

keyter
Text Box

gain specific access privileges. The credential provides information about the rights, qualifications,
responsibilities and other characteristics attributableto its bearer by one or more trusted authori-
ties. In addition, it provides trust information about the authorities themselves. Researchers have
also integrated credential based access control with role-based access control to facilitate security
administration [9, 3, 8, 10].

Although credential based models solve the problem of access control in open systems to a
great extent, it still has a number of shortcomings. A credential, strictly speaking, does not bind
a user to its purported behavior or actions. It does not guarantee that its bearer really satisfies
the claims in the credential. It does not convey any information about the behavior of the bearer
between the time the credential was issued and its use. A credential does not reveal whether it was
obtained via devious means. In real life some or all such information may play crucial parts in
access control decisions. Additionally, credential basedaccess control does not keep track of the
user’s behavior history. Access permission is given on the basis of the credential presented for a
particular session. Either the user’s credentials are accepted and required privileges are allowed,
or the credentials are rejected and the user does not get the access rights. Thus, good behavior by
the user cannot be rewarded with enhanced privileges nor badbehavior be punished.

The above observations motivate us to revisit the problem ofaccess control in decentralized
and multi-centric open systems. We believe credential based access control is a step in the right
direction. However, we would like to enhance the binary trust paradigm in these models with the
much richer multi-level trust model. In our trust model, trust levels in the users can be determined
not only by using the credentials presented by the user but also from the results of past interactions
with the user, from recommendations about the user and/or knowledge about other characteristics
of the user. A user is mapped to different trust levels based on these information. Trust levels
(and not users, unlike in conventional RBAC) are then mappedto roles of RBAC. Thus our access
control model is an enhanced RBAC (TrustBAC). Changes in thetrust level of user changes the
roles that the user has in the system and thus the user’s privileges. The system can define as many
trust levels as it wants and can assign each level to a specificset of resources tied with a specific set
of access privileges. The system just needs to monitor the trust level of the user and the regulation
of access is automatically achieved.

5.1 TrustBAC model

The TrustBAC model is defined in terms of a set of elements and relations among those elements.
The elements are of the following types:user, user_properties, session_instance, session_type,ses-

76
73

keyter
Text Box

sion, session_history, trust_level, role, object, action, permissionsandconstraint. The correspond-
ing sets are USERS, USER_PROPERTIES, SESSION_INSTANCES, SESSION_TYPES, SES-
SIONS, SESSION_HISTORY, TRUST_LEVELS, ROLES, OBJECTS, ACTIONS, PERMISSIO-
NS and CONSTRAINTS. The TrustBAC model is illustrated in figure 5.1(we use one-directional
arrows to represent one-to-many relationship, two directional arrows to denote many-to-many re-
lationships and plain lines to denote one-to-one relationships). We define the different elements as
follows.

USERS TRUST_LEVELS ROLES

OBJECTS ACTIONS

UTA RTA

RD

PA

PERMISSIONS

SESSION
_HISTORY

SESSION_
TYPES

TLD

SESSION_
INSTANCES

SESSIONS

CONSTRAINTS

STA

Figure 5.1: TrustBAC model

user A user∈ USERS is defined as a human being. The notion of user can be extended to include
systems, or intelligent agents, but for simplicity we choose to limit auserto a human entity.

user_properties Each user u has certain set of propertiesPu, calleduser_properties. The set
USER_PROPERTIES =

S

u∈USERSPu. A user can manifest any subset P ofPu (i.e., P ∈

2Pu) at a particular session.

session_instanceA session_instance∈ SESSION_INSTANCES is a ‘login’ instance of an user.
A user can instantiate multiple login thereby initiating multiple session_instances at the same
time. A session_instance is uniquely identified by a system generated id.

77
74

keyter
Text Box

session-typeA session_instance is identified with a type which is determined by the set of prop-
erties manifested in that session_instance by the user invoking that session_instance. For a
session_instance s invoked by a user u with P (P⊆ Pu) properties, has the session_type P.
Formally, the set SESSION_TYPES = 2USER_PROPERT IES.

sessionA session∈ SESSIONS is identified by a session_instance with a session_type. A session
with session_instance s of type P is denoted by the symbolsP. Formally, SESSIONS=

SESSION_INSTANCES×SESSION_TYPES.

session_historyA session_history∈ SESSION_HISTORY is a set of information regarding the
user’s behavior and trust level in a previous use of a sessionof that type.

trust_level A trust_level is a set of real number between -1 and +1. A user,at some instant of time
with a particular session has a trust_level. The set TRUST_LEVELS is the set of possible
subsets of [-1, 1]. That is, TRUST_ LEVELS ={S | S⊆ [−1,1]. Thus TRUST_LEVELS
becomes an infinite set where each member S can be either discrete or continuous.

role The concept of role is same as in the RBAC model. A role∈ ROLES is a job function with
some associated semantics regarding the responsibilitiesconferred to a user assigned to the
role.

object An object∈ OBJECTS is a data resource as well as a system resource. It canbe thought
of as acontainerthat contains information.

action An action∈ ACTIONS is an executable image of a program. ‘read’, ‘write’, ‘execute’ are
examples of a typical action.

permission A permission∈ PERMISSIONS is an authorization to perform certain task within
the system. It is defined as a subset of OBJECTS× ACTIONS i.e., PERMISSIONS=

2(OBJECTS×ACTIONS). Therefore, a permission ={(o,a) | o ∈ OBJECTS,a ∈ ACTIONS).
Permissions are assigned to a role. The type of a permission depends on the nature of the
system. The model does not dictate anything about the type.

constraint We borrow the concept of constraint from RBAC model. Therefore, a constraint∈
CONSTRAINTS is defined as a predicate which applied to a relation between two TrustBAC
elements returns a value of “acceptable” or “not-acceptable”. Constraints can be viewed as
conditions imposed on the relationships and assignments.

78
75

keyter
Text Box

Association between any two of the above elements are specified by mathematical relations.
TrustBAC has the following relations.

1. sua: USERS× SESSION_INSTANCES× SESSION_TYPES→ SESSIONS defines the
user-sessionassignment relation.sua(u,s,P)= sP for u∈USERS, s∈SESSION_INSTANCES,
P∈ SESSION_TYPES, andsP ∈ SESSIONS shows that a single sessionsP of type P is as-
sociated with a single user u with certain properties P. A user can invoke multiple sessions
of different types simultaneously.

2. UTA ⊆ USERS× TRUST_LEVELS defines theuser-trust_levelassignment relation. It is a
many-to-many relation where a user can have multiple trust levels. Since a user can invoke
many sessions at a time, she can have different trust levels,one for each invoked session. A
single trust_level can be assigned to many users. The restriction on a member(u,L) ∈ UTA
is L must be a singleton member of TRUST_LEVELS i.e.,L = {l}, l ∈ [−1,1].

3. STA⊆ SESSIONS× TRUST_LEVELS defines thesession-trust_levelassignment. It is a
one-to-many relation where a session can have only one trustvalue. That is, the trust_level L
corresponding to that session is a singleton member of TRUST_LEVELS. But many sessions
can have the same trust_level.

4. RTA ⊆ ROLES× TRUST_LEVELS defines therole-trust_levelassignment relation. It is
also a many-to-many relationship where a trust_level can beassociated with many roles and
same role can be performed with different trust_levels.

5. The functionush: USERS× SESSION_TYPES→ SESSION_HISTORY defines a three-
way relation between a user, a session_type and the trust history of the user in an earlier use
of a session of that type.ush(u,P) = uhP, where u∈ USERS and P∈ SESSION_TYPES.
A session_historyuhP is associated with a single user u and any sessionsP of type P. A user
can have many session_histories as a user can invoke many sessions of different types.

6. PA⊆ PERMISSIONS× ROLES is a many-to-many permission to role assignment relation.
An element in PA is of type(p, r) wherep∈ PERMISSIONS andr ∈ ROLES.

7. The functionAssigned_Roles: TRUST_LEVELS→2ROLESspecifies the mapping of a trust_level
L(⊆ [−1,1]) onto a set of roles. Formally,Assigned_Roles(L) = {r ∈ ROLES| (r,L) ∈

RTA}. It implies, for anyl ∈ L,Assigned_Roles({l}) = Assigned_Roles(L).

79
76

keyter
Text Box

8. The functionAssigned_Permission: ROLES→ 2PERMISSIONSspecifies the mapping of a role
r onto a set of permissions. Formally,Assigned_Permission(r)= {p∈PERMISSIONS| (p, r)∈

PA}. This function is same asassigned_permissionsfunction of RBAC model.

The constraints are applied on the above assignment functions depending on the access control
policies of the system. Constraints onAssigned_Rolesare similar to the constraints on user-role
assignment in RBAC model. It specifies which roles are ‘permitted’ to be assigned to a certain
trust_level. Constraints onAssigned_Permissionsdetermines the assignment of permissions to a
specific role. RBAC model suggests different constraints likemutually exclusive role, prerequisite

roles, cardinality constraints, static separation of duty, dynamic separation of dutyetc. But we
prefer not to specify any particular constraint on these functions. Rather we leave it as general to
give finer control in defining access control policies depending on the requirements of a system.

We also introduce a concept ofrole dominanceamong roles in our model.Role dominance

is similar to the concept ofrole hierarchiesin RBAC model. A role dominance relation, denoted
by RD, defines a dominance relation between two roles. The dominance is described in terms of
permissions. We define role dominance as,

Definition 26 Role dominanceRD⊆ ROLES×ROLESis a partial order on ROLES where the
partial order is called aDominancerelation, denoted by�. For any(r1, r2) ∈ RD, we sayr2

‘dominates’r1 only if all permissions assigned tor1 are also permissions ofr2. Formally,(r1, r2)∈

RD⇒ r1 � r2 andr1 � r2 ⇒ Assigned_Permissions(r1) ⊆ Assigned_Permission(r2).

The above definition implies that any user u having a roler2 can have all the privileges of a user
with role r1.

The relation RD induces a similar relation calledtrust dominance among trust_levels in our
model. Whenever there is a role dominance between two roles,there is a trust_level dominance
between the corresponding trust_levels. Trust_level dominance, denoted by TLD is defined as
follows:

Definition 27 Trust_level dominance,TLD⊆ TRUST_LEVELS×TRUST_LEVELSis a partial
order relation on TRUST_LEVELS and is denoted by≤′. For any(L1,L2)∈TLD, we sayL2 ‘dom-
inates’L1 only if L1 ⊆ L2. If L2 is a singleton set{l2}, then dominance is defined as,sup{L1} ≤ l2

that is,l2 is greater than or equal to the maximum element ofL1. If both L1 = {l1} andL2 = {l2}

are singletons thenL1 ≤
′ L2 ⇒ l1 ≤ l2 (the≤ is the usual ‘less equalto’ relation of number theory.)

The relation TLD is induced by RD. That is, for any(r1, r2) ∈ RD,∃(L1,L2) ∈ TLD such that
r1 ∈ Assigned_Roles(L1) and r2 ∈ Assigned_Roles(L2). That is, the trust degree of a user with
role r2 is greater than that of a user with roler1.

80
77

keyter
Text Box

5.2 Access Control Using TrustBAC

Basic purpose of an access control mechanism is to protect system resources by restricting the
user’s activities on them. A user’s authorization to perform certain tasks on specific resources is
specified by the access control policy of the system. When using TrustBAC for access control, a
userinvokes asession_instanceof a particular type at an instant of time. During this session the
user has atrust_levelwhich allows her to use theroles associated with that trust_level. That is,
a user can be a member of a role. Also a single role can be exercised by many users. For each
of these roles, the user has a set ofpermissions. Therefore, the user is restricted to perform a
set operations on a particular set of resources as specified by the set of permissions obtained as a
member of those roles.

A first time user u registers with the system and logs in which instantiates a session_instance
s of the user. Depending on the set of disclosed propertiesP, the system invokes the function
sua with arguments u, s, and P to start a sessionsP. The system initiates a trust relationship
(SYS

P
−→ u)N

t with the user in that session. The underlying context of thistrust relationship is
identified by the session_type P. This relationship does notchange, but gets updated for any other
session of same type P invoked by the same user u. If the user invokes another session_instance of
type P′ at time t, then the system creates another trust relationship (SYS

P′

−→ u)N
t . The value of the

trust relationship(SYS
P

−→ u)N
t is evaluated for the sessionsP. Let v(SYS

P
−→ u)N

t = l , l ∈ [−1,1].
The system invokes the functionAssigned_Rolesto determine the roles that the user u can execute.
Let Assigned_Roles({l}) = {r1, r2, . . . , rn}. u can choose to execute more than one of these n roles.
With eachr i, u has a set ofp js where∀ j,(p j , r i)∈PA. Therefore, in a sessionsP, the user u has the
set of permissions given by,

S

i Assigned_Permissions(r i) =
S

1≤i≤n{p ji | (p j , r i)∈PA}. Hence, the
user u is restricted to perform actions A on a set of objects O where∃ a p ji ∈

S

1≤i≤n{p ji | (p j , r i)∈

PA}, such that, for any(o,a) ∈ O×A, (o,a) ∈ p ji . The user executes these actions on the allowed
objects and each activity during that sessionsP is stored as the session_historyuhP for that session.
Whenever the trust_level is re-evaluated (withinsP or, at the start of next instance s′ of a session of
type P), theeventsin uhP are evaluated. The evaluated trust_level, sayl ′ overwritesl in uhP. The
subsequent events also overwrite the previous event log.

We assume that for a registered user u in a sessionsP, the trust relationship(SYS
P

−→ u) is
managed by a diligent system-administrator who is outside the scope of this access control frame-
work. We denote this system-admin by the symbolSYS. We also assume that the system has two
pre-defined policies – an access control policyAsysand a trust evaluation policyTsyswhich are not
independent.Asysdefines the functionsAssigned_RolesandAssigned_Permissionstogether with
the ‘constraints’ on them. The components are evaluated as

81
78

keyter
Text Box

Computing knowledge The user u initiates the sessionsP by disclosing a set of properties P,
which includes information (e.g., name, address, affiliation, etc.) as well as some credentials.
Credentials are in the form of typical digital certificates.The system assign a value within
[−1,1] as weights to the information and the credentials. The assignment is done as specified
by Tsys and SYSKP

u is computed according to the equation (2.5). The next instance of a
session of type P, the values assign to members of P may changedue to change in values in
P. For example, the user disclose the same type of certificate, but with a different certifying
authority.

Computing experience As mentioned in section2.2.2, experience is computed from theevents

occurred during some intervals. Our model does not dictate about the length of an interval. It
depends on implementation – the system may choose to identify a whole session as an inter-
val. Independent of the length of an interval, anyactionperformed by the user is identified as
an ‘event’. This record is kept in session_historyuhP till the next instant of trust evaluation.
Formally, letl be the trust_level of u in a sessionsP. LetAssigned_Roles(l) = {r1, r2, . . . , rn}

of which u activater1, r2, r3. These are theactive rolesof u in sessionsP. The events are the
set of actionsA where for anya∈ A, ∃ p∈

S

1≤i≤3Assigned_Permissions(r i). The weight
to the result of a particular action is assigned according toTsysand the experienceSYSEP

u is
computed as specified by equation (2.4).

Computing recommendation The system may takerole-specificandrole-independentinput from
other users about u in a session. These information constitute u’s recommendation and the
componentΨRP

u is calculated using equation in (2.6). Ψ is the set of other users who provide
recommendation for u to SYS. However, we choose not to specify how these information
are collected.

After computing the components, the system calculates the normalized trust by combining(SYS
P

−→

u)t and the normalization policy ofTsys. Then the previous trust_level is fetched fromuhP and final
(SYS

P
−→ u)N

t is calculated using the equation (2.7). The corresponding valuev(SYS
P

−→ u)N
t is

calculated as specified in the section2.2.6. This value denotes the current trust_level of u in a
session of type P and gets stored in corresponding session_history uhP.

82
79

keyter
Text Box

Chapter 6

Conclusions and Future Work

The concept of trust is widely used in secure information systems. For example, “trusted com-
puting base” refers to the hardware and software that make upthe security of a system; a “trusted
system” is one that is believed to be secure against relevantattacks, and so on. However, un-
til recently, there were no accepted formalism or techniques for the specification of trust and for
reasoning about it. Secure systems had been built under the premise that concepts like “trusted”
or “trustworthiness” were well understood, unfortunatelywithout even agreeing on what “trust”
means, how to measure it, how to compare two trust values and how to compose the same. There
had been a lack of a comprehensive mathematical framework for quantifying the amount of trust
that can be placed on complex systems. There are two models oftrust widely used Ð the binary
models and the non-binary models. The binary models assign avalue to trust of either 0 (no trust)
or 1 (complete trust). The non-binary models assign quantitative values in the range 0 to 1 or
qualitative values like high, medium, or low. The values of these models tend to be subjective
estimates. The existing models have no accepted formalism for the specification of trust or any
method to address the dependence of trust on time. There are no methods for measuring trust,
comparing trust values, and composing trust values.

The idea of a new formal model to assess multiple levels of trust, which is more in keeping with
the social models of trust used by policy makers, has been at the heart of our on-going research
during the past three years. In the first year of the project the core idea of a new “Vector” model of
trust was formulated and the key model elements were identified. In the second year the theoretical
aspects of the model were developed. The “Vector” model of trust provides an objective decision
support system, determines trust values, facilitates comparing trust values of two systems, negoti-
ates and manages trust values, and computes the trust value of composed systems (given the trust
values of the component subsystems). The model elements areas follows:

83
80

keyter
Text Box

1. A trust (distrust) relationship between a truster and a trustee is a three-element vector of
numeric values:

• Experience - e.g. history

• Knowledge - e.g. specifications and properties

• Recommendation - e.g. personal reports

2. Trust comparison and composition are accomplished usingthe three-element vector of nu-
meric values in 1 above.

3. Trust depends on previously established trust values andcan change with time if not updated.

4. A trust management system formulates, stores and managestrust vectors.

In the third year of the project, we subjected the model to peer-review. The process has resulted
in several papers in reputed conferences. In the third year of the project, we subjected the model
to peer-review. The process has resulted in several papers in reputed conferences.

Based partially on the feedback from the peer-review process, our own perceptions and com-
ments from potential users of the model, we have identified three core areas in which the model
needs to be refined and extended. These extensions will enable the model to be interoperable across
different domains.

A semantically richer representation of trust contexts The current model can reason about trust
relationships only within the confines of a single context. It allows two or more trust val-
ues to be compared or combined only when there is an exact match on the context. Even
if semantically equivalent contexts are expressed differently for two trust relationships, the
model is unable to compare or compose them. For example, let auserA trust userC to a
degreeT to keep a piece of information confidential (the context). Let another userB trust
C to degreeS to keep the same piece of information secret (context for this case). Although
semantically the two contexts are equivalent the current model fails to compare the trust de-
greesT andSbecause it cannot interpret the strings “confidential” and “secret” or identify
the relationship between the same. This constraint is too restrictive and may not be realistic
in most situations. We need to refine the current model to handle this scenario.

An ability to extrapolate trust relationships The model fails to evaluate a trust relationship be-
tween a truster and a trustee if the former does not have any experience, knowledge or rec-
ommendation (the model parameters) about the latter withina given context. This is still the

84
81

keyter
Text Box

case even if the truster has useful information about the model parameters in a related con-
text. For example, let an organizationA (the truster) trust a software developerB (the trustee)
to a degreeT to produce excellent quality anti-virus software (the context). It appears natural
for A to try to determine how much to trustB to produce application level firewall software
(a related context) based solely on the available information. However, the current model
returns an undefined value in such a case. The model, thus, needs an ability to capture the
semantic relationship between the two contexts and then extrapolate one trust relationship
based on the semantic relationship between the two contexts.

An ability to reason about trust chains The current model cannot successfully evaluate trust chains.
This is because trust relationships under the current modelare not considered transitive in
nature. However, certain types of trust relationships in real world are indeed transitive. The
best example of this is found in the delegation process. Suppose a userC trusts another user
D to determine who has access toCÕs resources. Thus ifD trusts a third userF and allows
F to access one ofCÕs resources,C transitively trustsF to some degree not to corrupt that
resource in a malicious manner. Trust chains also arise in dynamic ad-hoc coalitions. Dur-
ing the formation of such a coalition it is necessary to trust(to some extent) a new entrant
who is being introduced to the group by an existing member. The current model needs to be
extended to handle trust chains.

With these extensions in place, the refined model will be significantly more expressive and
usable than the current model. A major task remains after that, namely, a proper validation of the
model on a real word application. We hope to get future support from the AFRL in our effort to
refine and validate the model in this manner.

Publications Resulting from Project

The project resulted in the following papers.

1. Indrajit Ray and Sudip Chakraborty, “A Vector Model of Trust for Developing Trustworthy
Systems,” In Proceedings of the 9th European Symposium on Research in Computer Security
(ESORICS ’04), Sophia Antipolis, France, September 2004.

2. Indrajit Ray, Sudip Chakraborty and Indrakshi Ray, “VTrust: A Trust Management System
Based on a Vector Model of Trust,” In Proceedings of the 1st International Conference on
Information Systems Security (ICISS ’05), Kolkata, India,December 2005.

85
82

keyter
Text Box

3. Anna C. Squicciarini, Elisa Bertino, Elena Ferrari, and Indrakshi Ray, “ Achieving Privacy
with an Ontology-Based Approach in Trust Negotiations,” IEEE Transactions on Depend-
able and Secure Computing, 3(1), January-March, 2006.

4. Siv Hilde Houmb, Indrakshi Ray, and Indrajit Ray,“ Estimating the Relative Trustworthiness
of Information Sources in Security Solution Evaluation,” In Proceedings of the 4th Interna-
tional Conference on Trust Management, Pisa, Italy, May 2006.

5. Sudip Chakraborty and Indrajit Ray, “TrustBAC - Integrating Trust Relationships into the
RBAC Model for Access Control in Open Systems,” In Proceedings of the 11th ACM Sym-
posium on Access Control Models and Technologies (SACMAT’06), Lake Tahoe, CA, USA,
June 7-9, 2006.

6. Sudip Chakraborty, and Indrajit Ray, “ Allowing Finer Control Over Privacy Using Trust
as a Benchmark,” In Proceedings of the 7th Annual IEEE Information Assurance Workshop
(IAW’06), United States Military Academy, West Point, NY, June 21-23, 2006.

7. Indrajit Ray and Sudip Chakraborty, “A Framework for Flexible Access Control in Digital
Library Systems,” In Proceedings of the 20th Annual IFIP WG 11.3 Working Conference
on Data and Applications Security (DBSec’06), SAP Labs, Sophia Antipolis, France, July
31-August 2, 2006.

86
83

keyter
Text Box

Bibliography

[1] M. Blaze, J. Feigenbaum, and J. Ioannidis. The KeyNote Trust Management System Version
2. Internet Society, Network Working Group. RFC 2704, 1999.

[2] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. InProceedings of

the 1996 IEEE Symposium on Security and Privacy, Oakland, CA, May 1996.

[3] D.W. Chadwick, A. Otenko, and E. Ball. Role-Based AccessControl with X.509 Attribute
Certificates.IEEE Internet Computing, 7(2):62–69, March/April 2003.

[4] D. Ferraiolo, R. Sandhu, S. Gavrila, R. Kuhn, and R. Chandramouli. Proposed NIST Standard
for Role-Based Access Control.ACM Transactions on Information and Systems Security,
4(3):224–274, August 2001.

[5] T. Grandison and M. Sloman. A Survey of Trust in Internet Applications. IEEE Communi-

cations Surveys and Tutorials, 3(4), Fourth Quarter 2000.

[6] A.O. Hirschman. Three Ways of Compilcating Some Categories of Economic Discourse.
American Economic Review, 74(2), 1984.

[7] N. Li and J.C. Mitchell. Datalog with Constraints: A Foundation for Trust-management Lan-
guages. InProceedings of the 5th International Symposium on Practical Aspects of Declar-

ative Languages, New Orleans, Louisiana, January 2003.

[8] N. Li and J.C. Mitchell. RT: A Role-based Trust Management Framework. InProceedings

of the 3rd DARPA Information Survivability Conference and Exposition, Washington D.C.,
April 2003.

[9] N. Li, J.C. Mitchell, and W.H. Winsborough. Design of a Role-Based Trust-Management
Framework. InProceedings of the 2002 IEEE Symposium on Security and Privacy, Oakland,
California, May 2002.

87
84

keyter
Text Box

[10] N. Li, W.H. Winsborough, and J.C. Mitchell. Beyond Proof-of-Compliance: Safety and
Availability Analysis in Trust Management. InProceedings of the 2003 IEEE Symposium on

Security and Privacy, Oakland, California, May 2003.

88
85

keyter
Text Box

	Introduction
	The Vector Model of Trust
	Overview
	Model Description
	Trust evaluation
	Evaluating experience
	Evaluating knowledge
	Evaluating recommendation
	Normalizing the trust vector
	Value of the normalized trust vector
	Trust dynamics
	Trust vector at present time

	Comparison Operation on Trust Vectors
	Combining Trust Relationships
	Trust relationship between a truster and a group of trustees
	Trust relationship between a group of trusters and a single trustee
	Trust relationship between a group of trusters and a group of trustees
	Reconfiguration of a group

	The VTrust Trust Management System
	The VTrust System Architecture
	Conceptual Trust Model
	Inter-relationship of relational entities
	The VTrust database structure

	TrustQL: The VTrust Query Language
	TrustQL Keywords
	Trust Definition Language
	Specifying entity
	Specifying context
	Specifying experience
	Specifying knowledge
	Specifying recommendation
	Specifying trust dynamics
	Specifying trust evaluation policy
	Specifying trustee group policy
	Specifying truster group policy
	Specifying group reconfiguration

	Trust Manipulation Language
	INSERT trust value
	UPDATE trust value
	DELETE trust value
	SELECT trust value

	Model Application
	TrustBAC model
	Access Control Using TrustBAC

	Conclusions and Future Work
	final-report.pdf
	Introduction
	The Vector Model of Trust
	Overview
	Model Description
	Trust evaluation
	Evaluating experience
	Evaluating knowledge
	Evaluating recommendation
	Normalizing the trust vector
	Value of the normalized trust vector
	Trust dynamics
	Trust vector at present time

	Comparison Operation on Trust Vectors
	Combining Trust Relationships
	Trust relationship between a truster and a group of trustees
	Trust relationship between a group of trusters and a single trustee
	Trust relationship between a group of trusters and a group of trustees
	Reconfiguration of a group

	The VTrust Trust Management System
	The VTrust System Architecture
	Conceptual Trust Model
	Inter-relationship of relational entities
	The VTrust database structure

	TrustQL: The VTrust Query Language
	TrustQL Keywords
	Trust Definition Language
	Specifying entity
	Specifying context
	Specifying experience
	Specifying knowledge
	Specifying recommendation
	Specifying trust dynamics
	Specifying trust evaluation policy
	Specifying trustee group policy
	Specifying truster group policy
	Specifying group reconfiguration

	Trust Manipulation Language
	INSERT trust value
	UPDATE trust value
	DELETE trust value
	SELECT trust value

	Model Application
	TrustBAC model
	Access Control Using TrustBAC

	Conclusions and Future Work

